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Abstract
The combination of climate change and economic growth in disaster-prone regions increasingly exposes
the population to extreme weather events. While the aggregate impacts of disasters are well documented,
much less is known about the individual responses to these environmental shocks. In this paper, I estimate
the average treatment effects of household-level damage using a fuzzy regression discontinuity design in
the context of Hurricane Harvey, which damaged more than 200,000 homes in Houston, Texas in 2017. 1
leverage the relationship between flooding and a home’s elevation, exploiting a discontinuous increase in
damage from $0 to approximately $48,000 once water reaches the first floor. I provide novel evidence
that disaster damage induces homeowners to relocate from their pre-storm residence while simultaneously
delaying their decision to sell their property. The impacts on residential mobility attenuate over time, but I
document a persistent divergence in the location and type of housing selected by damage-induced movers.
My results indicate that flood damage makes people more likely to move shorter distances and transition
out of homeownership. Despite the combined shock to shelter and wealth, I find that flooded households
are more likely to sort into higher-income census tracts in the aftermath of Hurricane Harvey. Given the
importance of place-based spillover effects, the long-run welfare implications of suffering flood damage
remain an open area of research.

* Texas A&M University, wamiller@tamu.edu


https://bit.ly/3LxQQsj
mailto:wamiller@tamu.edu

1 Introduction

The combination of climate change and economic growth in disaster-prone regions increasingly exposes
the United States population to extreme weather events, with the number of inflation-adjusted
billion-dollar natural disasters nearly doubling during the 2010s (NOAA, 2023). The immediate cost of
natural disasters is driven by economic disruption and property damage (Smith and Katz, 2013). Housing
is the primary asset for a majority of US households, making residential property damage a mixture of
shelter and wealth shocks. While the aggregate impacts of disasters are well documented, much less is
known about how individuals respond to this blended shock, particularly in terms of housing
consumption.

Housing choices are central to individual well-being. The decision to remain in a home or move
to a new location could impact access to certain labor markets, health care systems, school districts, and
other amenities. Movers must decide where to relocate, and the characteristics of their neighborhood may
affect themselves or other members of their household through environmental or peer effects (Chyn and
Katz, 2021). They must also decide whether to rent or purchase their new residence, an investment
decision that may impact wealth creation and intergenerational mobility.

Theoretically, disasters affect housing choices through both demand and supply channels. The
destruction of local amenities as well as increased risk salience (or “new news”) pulls down the demand
to reside in impacted areas. Simultaneously, disasters decrease the supply of inhabitable housing.
Residents of these damaged units are forced to find alternative shelter, prompting various degrees of
relocation. For homeowners, relocation decisions may coincide with repairs and homeselling
considerations. These supply and demand dynamics evolve according to a multitude of factors including
the magnitude of disaster aid and relief. Empirical evidence of the general equilibrium effects of disasters
indicate higher residential mobility coupled with stagnation in housing market transactions (Boustan et
al., 2020; Zivin et al., 2023).

It is difficult, however, to distinguish the causal effect of disaster damage from the aggregate
economic shock due to the lack of administrative datasets detailing household-level exposure. Moreover,
damage is endogenous to a variety of factors including individual risk preferences and mitigation
measures as well as local investment in infrastructure and emergency preparations. These correlates may
introduce selection bias into estimates of average treatment effects on individual outcomes. The literature
addresses these challenges by comparing outcomes of all individuals in a disaster-struck area with
outcomes of observably similar individuals in unaffected places (Vigdor, 2007; Groen and Polivka, 2008;
Deryugina et al., 2018; Boustan et al., 2020). Another strand of the literature restricts analyses within a
disaster area, relying on local variation in damage intensity to identify causal effects (Hartley and
Gallagher, 2017; Bleemer and van der Klauww, 2019; Billings et al., 2022; Gallagher et al., 2023). These
techniques, however, estimate the average treatment effect of living in damaged areas rather than the
average treatment effect of damage itself.

In this paper, I estimate the average treatment effects of household-level damage using a fuzzy
regression discontinuity design in the context of Hurricane Harvey, which damaged more than 200,000
homes in Houston, Texas in 2017. I leverage the relationship between flooding and a home’s elevation,
exploiting a discontinuous increase in damage from $0 to approximately $48,000 once water reaches the
first floor. I follow Dong and Kolesar (2023) and implement a donut design, allowing for valid inference



despite measurement error in the running variable. To my knowledge, I offer the first causal estimates of
household-level damage on individual outcomes.

I provide evidence of the hyper-local nature of disaster damage and response. In particular, |
construct a household-level damage variable and exploit elevation differences between homes located in
the same subdivisions, finding substantial variation in damage that causes a divergence in neighborhood
and housing choices. My household-level results bolster the findings in the literature that leverages
aggregate damage as the level of treatment.

While residential mobility spiked after Hurricane Harvey, Billings et al. (2022) and Gallagher et
al. (2023) document little difference in out-of-Houston migration rates for those living in flooded and
non-flooded census blocks. Similarly, I find parallel trends in housing transactions across damaged and
non-damaged subdivisions, illustrating how local-area damage does not drive aggregate movement
patterns. The lack of correlation with household movements is surprising given the established connection
between local damage intensity and other individual outcomes in the literature.

My analysis, however, highlights the importance of household-level damage in individual
decision making despite the lack of association at the local level. I find that exposure to property damage
makes homeowners less likely to sell their homes relative to their non-flooded neighbors, particularly
during the first year of the recovery process. Homeowners on the margin of selling may delay that
decision as they repair their homes. Moreover, post-disaster construction-labor shortages can prolong
rebuilding efforts, and the full extent of disaster aid and insurance payments often takes months to
materialize.

Despite decreasing housing transactions, I estimate that damage induces homeowners to move
and relocate in the initial stages of the recovery process. This six-month short-run effect is dominated by
local moves within the Houston metropolitan area. The estimated effect on move propensity attenuates
over the recovery period, but I document a persistent divergence in the distance and location of post-storm
residential choices. My results indicate that flood damage makes people less likely to move long
distances, translating to more within-county moves and fewer out-of-county relocations.

Not only does damage affect locational choices, but I provide evidence that the household-level
shock leads to a transition out of homeownership. In particular, T estimate that $10,000 of damage causes
a 1 percent decrease in homeownership. The estimated effect widens when restricting the sample to
movers, with an estimated 8 percent average decrease in homeownership relative to non-flooded
neighbors who moved after the storm. The homeownership shock occurred during a period of substantial
home-price appreciation in Houston, where the average sale price increased 42 percent between 2017 and
2022. Back-of-the-envelope calculations suggest $175,000 of potential lost wealth for the average
household who transitioned into renter occupancy because of flood damage.

The effects on homeownership are particularly striking given that home loans through the Small
Business Administration (SBA) are the federal government’s dominant form of individual-level assistance
after natural disasters (Collier and Ellis, 2021). Billings et al. (2022) discuss the qualification hurdles for
SBA loans and how their regressive allocation may limit their effectiveness to the marginal homeowner
exposed to damage. This limitation may explain the damage-induced decrease in homeownership after
Hurricane Harvey.

Despite the combined shock to shelter and wealth, I find that flooded households are more likely
to sort into higher-income census tracts in the aftermath of Hurricane Harvey. Conditional on moving,
flood damage is associated with the consumption of newer and more expensive homes. This relative
improvement in physical and socioeconomic environments mirrors the long-run recovery patterns



documented in the disaster literature (Sacerdote, 2012; Deryugina et al., 2018; Deryugina and Molitor,
2020). Given the importance of place-based spillover effects, the long-run welfare implications of
suffering flood damage remain an open area of research.

The rest of my paper is structured as follows. Section 2 summarizes the natural disaster literature
and how individuals respond to environmental shocks. Section 3 offers an overview of Hurricane Harvey
and introduces the area of Houston that I analyze. Section 4 summarizes the sources of data and the
analytical sample. Section 5 presents my empirical strategy, and Section 6 explores the validity of my
approach. The main results are provided in Section 7, and I summarize the overall contribution of this
project in Section 8.

2 Literature Review

Advances in quasi-experimental methods spurred a renaissance in the disaster literature that began with
analyses of the victims of Hurricane Katrina. Hurricane Katrina survivors suffered in the short run, but
negative average effects dissipated over time across a range of outcomes, including mortality (Deryugina
and Molitor, 2020), and employment and earnings (Vigdor, 2007; Groen and Polivka, 2008; Deryugina et
al., 2018). These papers all use some variation of a difference-in-differences framework, where the
treatment group is a subset of individuals living in areas that were directly impacted by Hurricane Katrina
and the control group consists of observably-similar individuals elsewhere in the United States. The
estimands in these studies are generally interpreted as the average treatment effect of living in a disaster
region, which reflects a weighted average across the spectrum of individual-level disaster exposure. For
example, this weighted average includes the response of renter-occupied households as well as
homeowners whose property may or may not have been damaged. This average treatment effect is
particularly informative for evaluating community-wide impacts and recovery efforts across a region.

A parallel group of papers analyze the impacts of Hurricane Katrina by restricting comparisons of
individuals living within the disaster area. Sacerdote (2012) documents a short-run decline and
commensurate rebound in academic performance for Louisiana students who evacuated compared to their
non-evacuating peers. Gallagher and Hartley (2017) leverage local flood variation in New Orleans and
find that residents in the most flooded census blocks experience short-term spikes in financial distress
relative to those in less exposed areas. Bleemer and van der Klaauw (2019) extend this analysis by
examining how housing choices and household composition vary by census-block flood intensity. They
find an immediate increase in move propensity that is persistently positive for more than a decade.
Homeowners in New Orleans’ inundated census blocks were 10 percentage points less likely to own a
home by the end of the ten-year period.

More recently, a pair of papers has applied the census-block flood intensity approach to identify
the impacts of Hurricane Harvey on individuals in Houston, Texas. Using hydrologic data from the
Federal Emergency Management Agency (FEMA), Billings et al. (2022) calculate the weighted average
flood depth of developed land for each census block to explore differential responses to damage based on
access to insurance and credit. They find no signs of systematic financial distress for households living in
the 100-year floodplain, an area where flood insurance takeup rates are higher. Households who live in
flooded census blocks outside of the 100-year floodplain experience disproportionate increases in
delinquent debt and bankruptcy. The lack of flood insurance in these areas makes residents more reliant
on disaster assistance, but the allocation of these transfers is regressive and fails to counteract initial
inequalities in financial health. Gallagher et al. (2023) apply the same empirical strategy to analyze



investment in human capital, finding a reduction of student loans for college-aged individuals living in
flooded census blocks relative to their peers in other parts of Houston. These effects are prevalent in areas
with higher levels of homeownership, suggesting a relationship between disaster damage and
consumption and investment decisions.

The emphasis on census-block-level flooding illustrates the intuitive connection between disaster
damage and individual responses. While all individuals in a disaster area may be indirectly impacted by
the aggregate economic shock, the first-order concern for most disaster mitigation and relief efforts is to
address the direct effects of these events. The identifying assumption of the flood-intensity approach
relies on changes in outcomes of individuals in less-flooded census blocks providing a useful
counterfactual to changes in outcomes for those in more-flooded census blocks (conditional on observable
geospatial and socioeconomic factors). The literature supports this assumption by documenting the low
explanatory power of pre-disaster census-block characteristics on flood intensity. The absence of
correlation in aggregate data, however, does not imply individual-level exogeneity of flood exposure, and
there may still be concerns of household selection across or within census blocks based on flood risk or
unobservable factors.

While census blocks are the smallest geographic unit defined by the Census Bureau, they are
typically delineated by physical features rather than by the characteristics of inhabitants. I contribute to
this literature by restricting comparisons to people living in the same subdivisions, a locally-defined unit
that is more homogenous across individual-level characteristics." Moreover, I leverage the quasi-random
peak water level reached in these subdivisions during Hurricane Harvey, allowing for the identification of
the average treatment effects of household-level disaster damage.

3 Hurricane Harvey and Houston Texas

Hurricane Harvey landed in Texas in August 2017, producing record-level rainfall that inundated more
than 200,000 homes and caused $125 billion in direct damage. Figure 1 illustrates the widespread
flooding across the Houston metropolitan statistical area (MSA) by mapping the location of emergency
rescue requests throughout the region.

' See Table 2 for a comparison of within-group variation of housing characteristics for subdivisions and census
blocks.



Figure 1: Hurricane Harvey Rescue Requests
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Notes: The zoomed-in box displays the area surrounding the Addicks and Barker Reservoirs (shaded in dark gray).
Source: New York Times (2017)

One of the major empirical challenges in the natural disaster literature is the endogeneity of
damage. In the context of flooding, risk-averse individuals may select away from water sources or
implement mitigation measures (e.g., the installation of flood vents). Others may value water as an
amenity and prefer to live in close proximity to the natural resource, increasing their risk of flooding.
Endogeneity concerns extend beyond individuals, as community-level infrastructure investment and
maintenance are important determinants of local damage.

The Addicks and Barker Reservoirs highlighted in Figure 1 serve as Houston’s primary flood
infrastructure, as their earthen dams prevent runoff from the Katy Prairie from inundating the city center
during storms. The Army Corps of Engineers developed the reservoirs in the 1940s by constructing the
dams and acquiring 25,000 acres of abutting land. This government-owned land is designed to
temporarily detain rainfall and allow for controlled drainage into the Gulf of Mexico (Furrh and Bedient,
2023).

Unlike lake-forming reservoirs, the government-owned land is perennially dry outside of extreme
weather and is utilized as wooded parks, athletic fields, and other alternative uses, effectively masking its
flood risk to surrounding suburbs. Moreover, the reservoirs are constructed as giant detention basins,
creating a unique flooding mechanism that further distorts the salience of flood risk. While inland flood
exposure typically depends on proximity to flowing water, Panel A of Figure 2 shows how the reservoirs

create a pool based on a tub concept, where water rises uniformly with the basin irrespective of the
location of water flow.



Figure 2: Flooding Mechanism
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Panel B illustrates how Hurricane Harvey’s unprecedented rainfall filled the Addicks and Barker
Reservoirs, forcing water above the government-owned land for the first time and flooding thousands of
homes. These homes lie outside of the 100-year floodplain, a classification that serves as the primary



flood-risk signal in housing markets. I leverage the relatively unknown risk and unique flooding
mechanism of the Addicks and Barker Reservoirs to circumvent selection issues that challenge the
identification of causal effects of disaster damage on individual outcomes.

4  Data Sources and Sample Construction

I begin with the universe of owner-occupied housing units that were located in the Addicks and Barker
Watersheds at the time of Hurricane Harvey.” Residential property data are obtained from the Harris and
Fort Bend central appraisal districts and include the names of homeowners, occupancy status, property
values, and physical housing characteristics (e.g., home size and year of construction).?

Table 1 summarizes these characteristics within the two watersheds, where there are roughly
100,000 homes distributed across 2,200 subdivisions. These homes were typically constructed in the
mid-1990s, but homes in the Addicks Watershed tend to be smaller and lower-valued compared to homes
in the Barker Watershed.

Table 1: Summary Statistics

Mean (Standard Deviation) Addicks Watershed Barker Watershed
Year of Construction 1995 (10) 1994 (11)
Square Feet 2230 (728) 2707 (952)
2017 Appraised Value $183,538 (82858) $288,806 (134241)
Estimated Damage $1,333 (13078) $6,681 (31556)
Maximum LiDAR Ground Elevation 1,520” (121) 1,4317 (152)
Number of Subdivisions 1,637 852
Number of Owner-Occupied Homes 65,735 35,022

Notes: Summary statistics of owner occupied single-family residential properties located in the Fort Bend and Harris County portions of the
Addicks and Barker Watersheds.

Measuring Disaster Damage

Since no administrative datasets detail household-level damage during Hurricane Harvey, I approximate
this magnitude using pre- and post-storm property values from the Harris and Fort Bend central appraisal
districts. In particular, I calculate

(D) Damagej = MarketValue}

2017 MarketValue]

,2018°

where M arketValuei . measures the market value of the structure of property j (not including land value)

in year ¢. The 2017 values should not be influenced by Hurricane Harvey because those numbers were

2 The Addicks and Barker Watersheds are contiguous watersheds in northwest Houston that both contain reservoirs
with their respective names.

3 Portions of Waller County are located in the Addicks and Barker Watersheds, but these are mostly nonresidential
areas that lie several feet above the reservoirs.



calculated and certified before the storm occurred.* On the other hand, M arketValuei 2018 estimates the

value of property as of January 1st, 2018, which was approximately four months after Hurricane Harvey.
Consequently, Equation (1) reflects the change in property value due to disaster damage net of general
home-price changes in 2017 and repairs that occurred before year-end. Summary statistics in Table 1
indicate an average damage of $1,333 and $6,681 in the Addicks and Barker Watersheds, respectively, but
the size of the standard deviations reveal substantial variation.

Although Texas’ central appraisal districts are required to value property at 100% of its market
value as of January 1st of each year, the lack of mandatory sales-price disclosure challenges the accuracy
of these estimates. Anecdotal evidence, however, suggests that public appraisers have historically
accessed sales data, and the accuracy of market values for typical homes in large subdivisions are less of a
concern (Texas Tribune, 2014; City of Austin, 2020). Appendix A1 details the strong, positive
relationship between the damage estimates from Equation (1) and FEMA’s estimates of flood depth,
supporting the validity of this measure.’

Measuring Property Elevation

My identification strategy outlined in Section 5 relies on using property-level elevation as the running
variable in a regression discontinuity framework. In particular, properties are exposed to flood damage
when water exceeds their first floor elevation (FFE), which I approximate using aerial light detection and
ranging (LiDAR) data (TNRIS, 2022). Figure 3 exemplifies the distribution of LIDAR points that
measure the ground-surface elevation across two residential parcels in the Barker Reservoir.®

4 Some taxing jurisdictions allow for the reappraisal of property values after disasters. It is unclear if the central
appraisal districts retroactively updated their certified tax rolls, and these updates would bias my damage estimates
toward zero.

5 As an alternative approach, I use FEMA’s flood-depth estimates as the treatment variable, and results are provided
in Appendix ?.

% Based on conversations with housing developers, I assume that each property’s FFE is equal to its maximum
ground elevation. This approximation results in measurement error in my elevation running variable, and I explore
the structure of this error in Appendix A2.



Figure 3: Property-Level Ground Elevation
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Notes: Aerial LIDAR ground elevation points (measured in inches) for two residential properties in Oak Park Trails Subdivision in the Barker
Reservoir. Property parcel shapefiles are available at the Harris and Fort Bend Central Appraisal Districts. Aerial LIDAR data are accessed from
TNRIS (2022).

Outcomes

Given my analytical sample of owner-occupied households, I use deed transactions from CoreLogic’s
Owner Transfer dataset to determine if people sell their homes after Hurricane Harvey. I consider a home
as sold if a deed associated with the property is recorded after August 25th, 2017, when the storm stalled
over Houston. Approximately 15 percent of the sample recorded a deed within the 30 months leading up
February 2020.

In order to examine homeowners’ relocation decisions, I link the sample to a nationwide database
of address histories from Infutor Data Solutions, an aggregator of address data that compiles voter files,
property deeds, USPS address changes, etc.” The linked dataset allows me to analyze alternative measures
of residential mobility such as out-of-county and out-of-state migration as well as the number of miles
between pre- and post-storm residences. I also observe households’ decisions regarding homeownership
and housing characteristics by linking the dataset to CoreLogic’s statewide property tax roll data.
Census-tract socioeconomic factors of post-storm residences are obtained from the 2020 American
Community Survey.

" The details of my linking process are provided in Appendix A3.



5 Empirical Framework

The idiosyncrasies of Houston’s reservoirs described in Section 3 offer a unique setting to identify the
causal effects of disaster damage. My empirical strategy involves the comparison of outcomes for
households in the same subdivision who live just above and just below the peak water level reached in the
reservoirs during Hurricane Harvey. The US Army Corps of Engineers (2020) report that the Addicks and
Barker Reservoirs reached peaks of 1309.2 and 1219.2 inches above mean sea level, respectively, which I
use as thresholds in a fuzzy regression discontinuity design.

Consider a theoretical experiment where identical homes are randomly assigned different “doses”
of flooding. The average treatment effect of dose d could be estimated by the difference between mean
outcomes for those treated with d and non-flooded households.® Flood exposure, however, is a nonrandom
event at a hyper-localized level due in part to individuals’ mitigation measures (e.g., the installation of
flood walls or flood vents), community development decisions (e.g., drainage infrastructure), and
atmospheric and topographic variation. Table 2 documents heterogeneity in property characteristics across
a range of geospatial units in my sample.’ Properties are relatively homogenous within subdivisions, but
there remains variation in the value and size of homes as well as in elevation. Elevation (and therefore
flood risk) correlates with the value, size, age, and other (potentially unobservable) property
characteristics that may also be related to outcomes, introducing omitted variable bias into the ordinary
least squares estimator.

Table 2: Average (Within-Group) Standard Deviation

Group Level Market Value Home Year Maximum Ground

(Number of Groups) (2010-2016) Size Built Elevation (Inches)
Watershed (2) $101,034 812sqft 10.7 138”
Zip Code (10) $81,951 753sqft 9.5 78”
Census Block (3101) $31,026 445sqft 2.6 117
Subdivisions (2196) $20,865 383sqft 1.6 10”

Notes: Each row contains averages of within-group standard deviations at progressively smaller levels. For example, the standard deviation of
home size is 729sqft and 895sqft in the Addicks and Barker Watersheds, respectively, and the average is 812sqft across the two watersheds.
Averages are similar when weighted by the number of properties in each group.

I address this concern by analyzing properties at elevations near the peak water level that was
reached in the Addicks and Barker Reservoirs during Hurricane Harvey. Property and household
characteristics, as well as potential outcomes, should be smooth as you rise in elevation through the peak
water level because Hurricane Harvey’s precise magnitude was unknown a priori. Households could not
predict the peak water level when making residential-sorting decisions months or years before the storm.
The only difference between homes slightly above and below this level should be flood exposure. This

8 The average treatment effect at dose d describes the level effect of the dose-response relationship. Alternatively,
the slope effect captures average causal response to an incremental change in the dose at d (Callaway et al., 2021).
? For example, the standard deviation of home size is 729sqft and 895sqft in the Addicks and Barker Watersheds,
respectively, and the average of 812sqft across the two watersheds. The averages are similar when weighted by the
number of properties in each group.
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setting approximates a local randomized experiment, where quasi-identical distributions of homes receive
different damage doses.

My identification strategy exploits the fact that the intensity of flood damage decreases with a
property’s elevation up to the peak water level. For example, National Flood Services LLC estimates
approximately $37,000 in structural damage for a 2,500sqft, one-story home that is exposed to six inches
of water compared to $24,000 in damage for the same home exposed to a single inch. No damage is
expected for homes lying above water (FloodSmart, 2019). While the hydrology literature documents
several types of flood damage functions, a common characterization is a discontinuous increase in
damage at the first floor elevation (Theodosopoulou et al., 2022). Figure 4 illustrates a piecewise linear
damage function with a discontinuity where the first floor elevation equals the peak water level.

Figure 4: Theoretical Damage Function

Damage;

&

= Inches Below Peak Water Levelj

Notes: The running variable is the difference between the peak water level and property j’s first floor elevation. For example, a property whose
first floor elevation is one foot below the peak water level has a running variable = 12.

I formalize this approach to estimate the average treatment effects of damage by using a fuzzy
regression discontinuity design, where the expected damage function jumps discontinuously at the peak
water level. I include subdivision fixed effects to restrict comparisons to individuals who live in
observably-equivalent homes but on different sides of the peak water level.

As mentioned in Section 4, [ approximate each property’s first floor elevation with its maximum
ground elevation, admittedly using a running variable with measurement error.'® Following Dong and

1" Dong and Kolesar (2023) find that nearly a quarter of regression discontinuity designs that are published in top
economics journals suffer from this threat to identification. Their proposed donut solution provides for valid
inference for the local average treatment effect of units with values of the mismeasured running variable near the
true threshold. In contrast, the canonical regression-discontinuity framework that estimates the local average
treatment effect of units with values of the #rue running variable around the same threshold.
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Kolesar (2023), I implement a donut design to allow for valid inference despite mismeasured elevation.
The donut solution requires two key assumptions. First, potential outcomes must be smooth in the
mismeasured variable, which may hold mechanically as measurement error in the running variable tends
to smooth conditional expectation functions. To illustrate this phenomenon in my context, [ simulate a
$20,000 damage discontinuity as a function of property elevation, comparing measurements with and
without 12-inches of elevation error. Panel A of Figure 5 reveals how measurement error distorts the true
discontinuity by smoothing the conditional expectation function.

The second assumption requires that the mismeasured running variable correctly classifies
treatment assignment. The simulated measurement error on the right side of Panel A, however, illustrates
how some undamaged (damaged) homes are misclassified below (above) the peak water level. Panel B
illustrates how removing the misclassified observations resolves the measurement-error issue. In
particular, implementing a 12-inch donut in the presence of 12 inches of measurement error results in a
point estimate that is much closer to the simulated discontinuity. Note that the standard challenges of
donut trimming apply in this context (e.g., lost sample size and a modified local average treatment effect).

Figure 5: Simulated Damage Function

Panel A: Regression Discontinuity
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To implement the donut fuzzy regression discontinuity design, I start by estimating the
discontinuity in damage around the peak water levels reached in the Addicks and Barker Reservoirs. I
standardize the running variable by subtracting property j’s maximum ground elevation from the peak
water level of the reservoir in which j is located, resulting in a measure of the relative inches below the
threshold. The estimating equation of the first stage is

(2) Damage, = a_+ yr, + Bl{r 20} + yr 1{r=0} +§ forr € [A, R0 M R

r r

where Damage is determined by Equation (1), o represent subdivision-level fixed effects, 7 is the

standardized running variable, 1{rl,20} is an indicator equaling 1 if j lies below the peak water level, hl

onut

and hr are the left- and right-sided bandwidths, respectively, and hld and hrdonut are the left- and

right-side lengths of the donut.

There are two primary motivations for the fuzzy component of the model. First, the magnitude of
damage depends on the volume of water exposure to a home. The fuzzy design allows for causal
identification of average treatment effects in the presence of different treatment intensities. Second, the
probability of damage is non-binary across elevation because of other idiosyncrasies and determinants of
flooding, i.e., there exists subsets of the population whose damage was not determined by their elevation
relative to the peak water level. The fuzzy design allows for the identification of the local average
treatment effect of the households who flooded because of this relative elevation (i.e., the “compliers”).

The reduced-form regression equation illustrates how elevation is used to estimate the effect of
flood damage on outcomes. Specifically, the reduced-form equation is

(3) ¥, =« + wr + A{r 20} + ¢r1{r=0} +n 1€ [h Y™ 0 ™ R ],

Ul T r

where Y is the outcome of interest. Note that the parameter A is the local average treatment effect of living
below the peak water level (or the intention-to-treat effect). The local average treatment effect of flood
damage can be recovered by scaling A by the parameter [3 from the first stage.

The causal interpretation of these parameters (and their ratio) relies on three key identifying
assumptions in my setting. First, there must exist a relationship between a property’s maximum ground
elevation and flood damage that changes as you approach the edges of the donut surrounding the peak
water level. Second, maximum ground elevation must accurately assign instances where flood damage
occurred. Third, the exclusion restriction requires potential outcomes to be smooth through the peak water
level and for the peak water level to affect outcomes only through its impact on flood damage. I evaluate
these assumptions in Section 6.

6 Empirical Validation

I begin by exploring the damage-elevation relationship in the Addicks and Barker Watersheds that is
specified in Equation (2). Figure 6 reveals a smooth curve similar to the simulation results with
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measurement error. There are fewer observations to the right of the threshold because the reservoirs’ peak
water levels only extended about three feet above the government-owned land and into neighborhoods."

Figure 6: First Stage
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Notes: The coefficient plot is generated by rounding elevation to the nearest inch and estimating a subdivision fixed effects model saturated in
1-inch elevation dummy variables. The sample mean of the outcome variable is added back to the coefficient estimates for illustrative purposes.
The red lines correspond to the preferred sample trimming at -18.7 and 6.6 inches below the peak water level.

Based on the measurement error structure explored in Appendix A2, I trim the sample from -18.7
to 6.6 inches to ensure that ground elevation reasonably assigns the occurrence of flood damage. Using
this donut design, I estimate an average increase of $47,795 in flood damage for homes lying just below
the peak water level. Robustness tests in Appendix 5 corroborate the stability of my estimates at different
donut sizes and bandwidths.

The third identifying assumption requires potential outcomes to be smooth through the peak
water level and for the peak water level to affect outcomes only through flood damage. While this is
inherently untestable, I provide support for this claim by documenting a relatively constant relationship
between elevation and pre-storm property characteristics. Figure 7 illustrates the similarity in housing
characteristics above and below the peak water level, which is unsurprising as Harvey’s precise
magnitude was unpredictable when households moved into these neighborhoods. The lack of pre-storm
patterns supports the assumption that a property’s distance from the peak water level only affected
households through the impact of flood damage.

'' An additional asymmetry appears around the threshold because of the right-skewness of elevation measurement
error that is discussed in Appendix A2.
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Figure 7: Pre-Storm Property Characteristics and Elevation
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Notes: Panels A and B replace the outcome in Equation (2) with the property’s year of construction and structure square footage, respectively.
The regression estimates and lines are based on Equation (2), a local linear regression with uniform kernels and a preferred bandwidth of
[-120.0,-18.7] and [6.6,36.0]. Standard errors are clustered at the neighborhood level. The coefficient plots are generated by rounding elevation to
the nearest inch and estimating a subdivision fixed effects model saturated in 1-inch elevation dummy variables. The sample mean of the outcome
variable is added back to the coefficient estimates for illustrative purposes. The red lines correspond to the preferred sample trimming at -18.7 and
6.6 inches below the peak water level.

7  Results

Natural disasters are associated with increased residential mobility (Boustan et al., 2020). Billings et al.
(2022) and Gallagher et al. (2023) indicate a similar pattern after Hurricane Harvey, when out-of-Houston
migration spiked immediately after the storm. Migration rates, however, were roughly the same in flooded
and non-flooded census blocks, suggesting that local level damage played little role in individuals’
mobility decisions.

While individuals may not differentiate relocation decisions based on local damage intensity,
Panel A of Figure 8 indicates the importance of property-level damage in influencing behavior.
Households exposed to $10,000 of flood damage are 2 percentage points (40 percent) more likely to move
out of their pre-Harvey residence within six months of the storm compared to their non-flooded neighbors
who lived above the peak water level. Panel B illustrates the estimated cumulative impact on residential
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mobility over the 10 quarter post-period. The spike in mobility is not captured in 3Q2017 data as
Hurricane Harvey stalled over Houston during the last week of August. The initial wave of moves occurs
in 4Q2017 and 1Q2018 before attenuating through 2019. Panels C and D reveal differential dynamics
across move types. Damage causes an immediate increase for within-county moves that persists for nearly
two years. On the other hand, there is a delayed impact on out-of-county moves that lasts several quarters
before dissipating. Longer distance moves may require more planning and carry higher transaction costs
that prevent an instantaneous response during disaster events.

Figure 8: Residential Mobility
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Equation (3) and the first stage effect [AS from Equation (2). Panel A is based on an indicator for Infutor observing at least one individual in
household j moving between September 2017 and March 2018. The regression estimates and lines are based on Equation (3), a local linear
regression with uniform kernels and a preferred bandwidth of [-120.0,-18.7] and [6.6,36.0]. Standard errors are clustered at the neighborhood
level. The coefficient plots are generated by rounding elevation to the nearest inch and estimating a subdivision fixed effects model saturated in
1-inch elevation dummy variables. The sample mean of the outcome variable is added back to the coefficient estimates for illustrative purposes.
The red lines correspond to the preferred sample trimming at -18.7 and 6.6 inches below the peak water level. Panel B plots the point estimates
and 95% confidence intervals using a cumulative outcome variable for each post-storm quarter. For example, the estimates for 1Q2018 are based
on whether at least one individual in a household moved between September 2017 and March 2018. Standard errors are clustered at the
neighborhood level.

Economic theory predicts an aggregate decrease in housing market transactions after natural
disasters that results from a combination of decreased housing stock and demand. Zivin et al. (2023)
present evidence for this phenomenon from Florida’s response to hurricanes between 2000 and 2016.
Similar to trends in residential mobility, I display the lack of relationship between local-level damage and
home sales in Figure 9. The number of home sales in high- and low-damage subdivisions track similarly
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before and after Hurricane Harvey. If anything, high-damage subdivisions suffer a stronger shock on
impact and then rebound higher for longer.

Figure 9: Housing Sales the Addicks and Barker Reservoirs’ Subdivisions
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Notes: I collapse the count of CoreLogic deed transactions at the subdivision level. Subdivisions with above zero average property damage are
classified as “high damage.” The two series are residualized by quarter and rescaled by the constant term.

The results in Figure 10, however, confirm that property-level damage causes a decrease in
housing sales in the short run. I estimate that $10,000 of damage decreases homeowners’ propensity to
sell within six months by 0.3 percentage points (21 percent) relative to their non-flooded neighbors who
lived just above the peak water level. The cumulative impact grows for about a year before attenuating in
2019, suggesting that damage temporarily delays sales that would have occurred in the absence of
flooding. Homeowners on the margin of moving may choose to repair their property before selling, and
many flooded households were forced to wait months after Hurricane Harvey for full disbursement of
disaster aid or insurance payments to help fund this investment.

17



Figure 10: Housing Sales
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Notes: The point estimate é is the the estimated causal effect of $10,000 of damage, reflecting the ratio of the reduced form effect 3\ from

Equation (3) and the first stage effect é from Equation (2). Panel A is based on an indicator for property j having a deed recorded between
September 2017 and March 2018. The regression estimates and lines are based on Equation (3), a local linear regression with uniform kernels and
a preferred bandwidth of [-120.0,-18.7] and [6.6,36.0]. Standard errors are clustered at the neighborhood level. The coefficient plots are generated
by rounding elevation to the nearest inch and estimating a subdivision fixed effects model saturated in 1-inch elevation dummy variables. The
sample mean of the outcome variable is added back to the coefficient estimates for illustrative purposes. The red lines correspond to the preferred
sample trimming at -18.7 and 6.6 inches below the peak water level. Panel B plots the point estimates and 95% confidence intervals using a
cumulative outcome variable for each post-storm quarter. For example, the estimates for 1Q2018 are based on whether a property had a deed
recorded between September 2017 and March 2018. Standard errors are clustered at the neighborhood level.

While the effects on homeowners’ relocation and home-sale decisions attenuate over time, 1
document a persistent impact on housing consumption. For example, Figure 11 illustrates the effect of
flood damage on the probability of households owning their post-Harvey residence. I estimate that
$10,000 of damage decreases homeownership by 0.8 percentage points (1 percent) through 2019. This
estimate is statistically significant at the 95 percent confidence level despite flooded and non-flooded
households changing their residences at roughly the same rate by the end of this period. The estimated
decrease in homeownership is particularly stark given that only 15 percent of the sample relocated from
their pre-storm residence during the 30-month post period.'? Conditioning on the set of movers in Panel B
reveals a large transition out of owner occupancy. In particular, households exposed to $10,000 of damage
are 5.5 percentage points (or 8 percent) less likely to own their next residence compared to their
non-flooded peers. While smaller in magnitude, these results align with Bleemer and van der Klaauw
(2019), who find persistently lower homeownership rates among people who lived in inundated parts of
New Orleans during Hurricane Katrina.

The transition out of homeownership occurred during a period of substantial home-price
appreciation in Houston, where the average sale price increased 42 percent between 2017 and 2022. The
average pre-storm home value for households who were located below the peak water level and who
transitioned out of homeownership was roughly $245,000. Applying the average increase in sale price,
these homes would have surpassed an average of $347,000 by 2022. This appreciation combined with an
average of $73,000 of damage incurred by these households suggests approximately $175,000 of potential
lost wealth for households who transitioned into renter occupancy because of flooding.

121 consider moving as a necessary condition to transition into renter occupancy since the analytical sample consists
of homeowners at the time of Hurricane Harvey.
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Figure 11: Estimated Average Treatment Effect on Homeownership
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Notes: I consider an individual as a post-storm renter if they sold their home after Hurricane Harvey and did not appear in Texas appraisal-district
data at their new address before 2022. The American Community Survey indicates that a majority of interstate movers rent their new residence,
and due to data constraints I assume people who leave Texas are post-storm renters. The left side of Panel A uses the full sample including

homeowners who do not sell after Hurricane Harvey. The right side of Panel B restricts the sample to movers. The point estimate 0 is the the

estimated causal effect of $10,000 of damage, reflecting the ratio of the reduced form effect 5\ from Equation (3) and the first stage effect [% from
Equation (2). The regression estimates and lines are based on Equation (3), a local linear regression with uniform kernels and a preferred
bandwidth of [-120.0,-18.7] and [6.6,36.0]. Standard errors are clustered at the neighborhood level. The coefficient plots are generated by
rounding elevation to the nearest inch and estimating a subdivision fixed effects model saturated in 1-inch elevation dummy variables. The
sample mean of the outcome variable is added back to the coefficient estimates for illustrative purposes. The red lines correspond to the preferred
sample trimming at -18.7 and 6.6 inches below the peak water level.

The impact of flood damage extends to the types of neighborhoods and homes where individuals
choose to live. Results in Figure 12 indicate that impacted households tend to sort into higher-valued
homes and higher-income neighborhoods. These changes in socioeconomic environment, combined with
the estimated decrease in homeownership, highlight the potential tradeoffs in a post-disaster environment.
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Figure 12: Estimated Average Treatment Effect on Neighborhood and Home Choice for Movers
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Notes: Figure 12 restricts the sample to individuals who sold their home after Hurricane Harvey and who have a post-storm address in the Infutor
data. Panel A considers only those who relocated within Texas, as I am only able to match post-storm movers to appraisal district data within the

state, while Panel B includes movers who relocated across the United States. The point estimate 6 is the the estimated causal effect of $10,000 of

damage, reflecting the ratio of the reduced form effect )A\ from Equation (3) and the first stage effect é from Equation (2). The regression estimates
and lines are based on Equation (3), a local linear regression with uniform kernels and a preferred bandwidth of [-120.0,-18.7] and [6.6,36.0].
Standard errors are clustered at the neighborhood level. The coefficient plots are generated by rounding elevation to the nearest inch and
estimating a subdivision fixed effects model saturated in 1-inch elevation dummy variables. The sample mean of the outcome variable is added
back to the coefficient estimates for illustrative purposes. The red lines correspond to the preferred sample trimming at -18.7 and 6.6 inches below
the peak water level.

8  Conclusion

The natural disaster literature has documented a dynamic recovery process across a variety of outcomes
for individuals living in disaster-struck areas. [ contribute to this literature by using property-level data in
a quasi-experimental design to estimate the average treatment effect of household damage exposure on
residential mobility, home sales, and other housing choices after Hurricane Harvey. I leverage the
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relatively unknown risk and unique flooding mechanism of Houston’s Addicks and Barker Reservoirs to
circumvent selection issues that challenge the identification of causal effects of disaster damage. I
overcome measurement error in the elevation running variable by sample trimming, resulting in a donut
regression discontinuity design. I examine the relationship between flooding and a home’s elevation,
exploiting a discontinuous increase in damage from $0 to approximately $48,000 once water reaches the
first floor. The results from this first stage are used to rescale reduced-form estimates to examine the
impact of the $10,000 of flood damage on housing choices.

Although local-level exposure does not necessarily correlate with household movement patterns, I
reject the notion that home sales and relocation decisions are unaffected by disaster damage. [ estimate
that flood damage increases residential mobility in the short run, particularly for shorter-distance moves.
In contrast, flood damage delays home sales for about a year after Hurricane Harvey. These opposite
effects align with theoretical predictions of disaster damage making a portion of the housing stock
uninhabitable.

In addition to impacting locational choices, I provide evidence that household-level damage
pushes people out of homeownership. In particular, I estimate that $10,000 of damage causes a 1 percent
decrease in homeownership, leading to approximately $175,000 of potential lost wealth over a five year
period. Despite the combined shock to shelter and wealth, I find that flooded households are more likely
to sort into higher-income census tracts in the aftermath of Hurricane Harvey. This relative improvement
in physical and socioeconomic environments mirrors the long-run recovery patterns documented in the
disaster literature (Sacerdote, 2012; Deryugina et al., 2018; Deryugina and Molitor, 2020). Since disaster
damage pushes people out of their neighborhoods and into new economic environments, the impacts of
extreme weather may extend into other aspects of life. These neighborhood effects may augment or offset
the transition into different types of housing or housing tenure.

The totality of my results raise important questions about the effectiveness of disaster aid. For
example, the delayed effect on housing transactions may indicate that SBA loans are protecting people
from losing their homes after catastrophic events. On the other hand, disaster damage net of relief efforts
led to a substantial transition out of homeownership and into renter occupancy. The normative
implications of this transition are unclear, especially as flooded households tend to relocate into higher
income neighborhoods that may offer improved economic opportunities.
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Appendix Al: FEMA Flood Depth and Damage
Estimates

Immediately after Hurricane Harvey, FEMA began modeling flood depths (i.e., the difference between
water elevation and ground elevation) across the disaster zone. FEMA'’s flood-depth data are based on a
variety of sources including observed water levels at stream gauges, remote sensing, and other inspection
data. These data are intended to be used for determining damage levels on specific structures (FEMA,
2018).

Figure A1 presents the relationship between three measures of property-level flood depth and my
estimates of flood damage in the Addicks and Barker Watersheds. FEMA’s model does not capture flood
depths below 12 inches, resulting in left-censored data grouped at zero inches. Properties where the
minimum flood depth is approximately 12 inches average almost $10,000 of damage. All three
flood-depth metrics are positively related to my damage estimates.

Figure Al: Property-Level Flood Depth and Estimated Damage

40000
L ]
. [ ]
o '
30000 - . e
@ Y ° .. [ X ] ™
(o]
g .® ¢ * o .
8 20000- . * Min
2 . d ® Mean
® e . * Max
£ N e
8 .
10000 - . .
o. ° .. 0.0
L ]
. o..:. '..0' oo’
0 .03:' -2
L ]
T T T T T T T
0 6 12 18 24 30 36

FEMA Modeled Flood Depth (Inches)

Appendix A2: Measurement Error in Elevation

One of the implications of the intra-parcel elevation variation is that [ may not observe the true FFE.
Based on conversations with housing developers, I assume that each property’s FFE is equal to its
maximum ground elevation. In order to explore the error structure of this approximation, I obtain
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validation data generated by mobile (rather than aerial) LIDAR technology that measures the elevation of
the base of each home’s front door (Cyclomedia, 2020). There is minimal overlap between the validation
data and my analytical sample, but I am able to compare the maximum ground elevation and base-of-door

elevations for 13,000 homes in other parts of Houston.

Figure A2 displays the distribution of deviations between the two measures. The maximum
ground elevation tends to be higher than the base of the front door, resulting in positive skewness.
Variation in landscaping, natural land gradients, and instrument imprecision likely explain this
overestimation. The maximum ground elevation, however, is highly predictive of base-of-door elevation,
with a 0.99 correlation coefficient and a majority of errors lying within seven inches. I use this error
structure to refine my empirical strategy in Section 5.

Figure A2: Elevation Data Deviations
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In order to satisfy the second identifying assumption outlined in Section 4, the mismeasured
elevation must correctly classify when properties are damaged. In an ideal setting, I would delete
observations whose maximum ground elevation lies within the support of measurement error estimated
from the validation data. This support, however, extends from -30 to 48 inches, thereby removing my
entire sample right of the threshold. I opt for a tighter trimming that spans 80 percent of the error support
but maintains two-thirds of my sample right of the threshold.
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Appendix A3: Data Linking Process

The linking process begins by cleaning the Harris and Fort Bend Central Appraisal Districts’ property
owner name fields. Plural referential phrases (e.g., “et uxor”) and their abbreviations (e.g., “et ux.”) are
omitted as well as commonly used titles (e.g., “Mr.”, “Mrs.”, etc.). Suffixes (e.g., “Junior”, “Senior”, etc.)
are standardized and abbreviated.

In Step 1 I link more than 17,000 movers (57 percent) to the Infutor data based on an exact match
of their names and addresses at the time of Hurricane Harvey. The imperfect match rate is likely driven by
lack of standardization of names and addresses across data sources. For example, the use of a middle
initial rather than a middle name would result in a failure to match.

Figure A3: Linking Central Appraisal District Data to Infutor
Step 1: Identify Exact Matches

Movers Jaro-Winkler Scores Infutor
James D. Jones 1.0 James D. Jones
122 Main St 1.0 122 Main St
2.0
Jane Sue Doe 0.91 Jane Doe Match List

James D. Jones| 122 Main St
Eric Lee 321 Sunny Lane

456 W. Magill Ave 0.93 456 West Magill Avenue
1.84 I Name Address

Jerry Smith 0.39 Smith Jerry
789 Meadowland Blvd 1.0 789 Meadowland Blvd
1.39
Eric Lee 1.0 Eric Lee
321 Sunny Lane 1.0 321 Sunny Lane
2.0

Step 2: Identify High-Quality Unmatched Movers

Movers Jaro-Winkler Scores Infutor
Jane Sue Doe 0.91 Jane Doe Match List

4 A i - i
56 W. Magill Ave 0.93 456 West Magill Avenue

.84 .
L8 James D. Jones 122 Main St
i E—s - ic e Eric Lee 321 Sunny Lane
el = e Jane Sue 456 West Magill Avenue,

789 Meadowland Blvd 1.0 789 Meadowland Blvd
1.39

I allow for more flexible matching in Step 2 using the Jaro-Winkler string-distance algorithm,
which scores the similarity of strings between 0 and 1 for no similarity and exact matches, respectively.
Since I link movers based on both names and addresses, the combined Jaro-Winkler score ranges from 0
to 2. I consider combined scores above 1.8 to be extremely accurate, and the inclusion of these
high-quality matches increases the number of movers whom I observe to 22,901 (77 percent).

I extend the analysis further by analyzing how movers’ housing consumption differs between
their pre- and post-storm addresses. Specifically, I take the movers who matched to Infutor, and I match
them a second time based on their post-storm address to CAD data across Texas obtained from
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CoreLogic."” This second phase of matching repeats the methodology used in the first phase, considering
only matches with at least a 1.9 combined Jaro-Winkler score. I successfully match more than 3,000
movers across Texas, all of whom maintained owner occupancy despite selling their pre-Harvey home.

Note that if a mover transitions out of owner occupancy, they cannot be accurately matched in the
second phase because they do not own their post-storm residence. Consequently, I perform an exact match
based solely on post-storm addresses to the statewide CAD data to learn more about the housing
consumption of households who transitioned into renter occupancy.

Appendix A4: Additional Outcomes

The Owner Transfer dataset also contains information on foreclosures, an outcome indicative of financial
distress and hardship.'* Foreclosures are a relatively rare event, with an average of 6 foreclosures per
hundred households in Houston between 2010 and 2016.

Foreclosures offer an alternative (yet infrequent) mobility outcome that may be particularly
sensitive to physical property damage. Homeowners faced with repair costs may default on mortgage
payments if budget constraints are binding, and policymakers recognize this threat by often implementing
foreclosure moratoria in the aftermath of a disaster. Appendix Table ? provides results for the impact of
damage on foreclosures, where I find tightly estimated null effects through 2017 when the moratorium
was effective. The 95 percent confidence intervals encompass zero throughout the post-Harvey period,
but there are signs of a temporary spike in the summer of 2018, when the first Harvey-related foreclosure
proceedings occurred. This potential uptick was short lived, and point estimates hover below zero through
the remainder of the analytical period. Importantly, my outcome only accounts for foreclosures of a
homeowner’s pre-storm address, but damaged households may experience differential risk of foreclosing
on their next residence.

Appendix AS5: Robustness Tests

The general specification outlined in Equations (2) and (3) require an arbitrary bandwidth and donut-size
selection. Based on sample-size constraints and the structure of elevation measurement error detailed in
Section 5 and Appendix A2, I use a bandwidth of [-120.0,-18.7] and [6.6,36.0] to estimate the various
discontinuity parameters. The following figures explore the robustness of this bandwidth selection.

31 do not have access to CoreLogic’s national data, preventing me from linking out-of-state movers to their
post-storm addresses.

14T use a broader definition of foreclosure that includes foreclosure deeds, deeds of trust that specify foreclosure, as
well as deeds in lieu of foreclosure, the latter of which is colloquially known as a “friendly foreclosure.”
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Figure A5.1: First Stage (Robustness)
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Figure A5.2: Year of Construction (Robustness)
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Point Estimate

Figure A5.3: Home Size (Robustness)
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Figure A5.4: Short Run Moves (Robustness)
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Appendix A: Sample Selection

For ground elevation to be a valid instrument for flood damage (and, therefore, negative wealth shocks)
during Hurricane Harvey, it must satisfy two conditions. First, ground elevation must be a relevant
variable, i.e., a property’s ground elevation must be linearly correlated with degree of flood exposure.
Second, ground elevation’s impact on outcomes can only transmit through flood damage during Harvey.
A potential threat to identification is selection into flood risk. For example, if wealthier
homebuyers prefer high-elevation homes, then flood exposure would be correlated with wealth. Note that
in Texas flood risk is primarily communicated through floodplain designations because federally backed
mortgages require flood insurance on leveraged property. Hence, most properties downstream from the
Addicks and Barker Reservoirs were flood and insured, implying a baseline level of knowledge of
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