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‭1‬ ‭Introduction‬
‭The combination of climate change and economic growth in disaster-prone regions increasingly exposes‬
‭the United States population to extreme weather events, with the number of inflation-adjusted‬
‭billion-dollar natural disasters nearly doubling during the 2010s (NOAA, 2023). The immediate cost of‬
‭natural disasters is driven by economic disruption and property damage (Smith and Katz, 2013). Housing‬
‭is the primary asset for a majority of US households, making residential property damage a mixture of‬
‭shelter and wealth shocks. While the aggregate impacts of disasters are well documented, much less is‬
‭known about how individuals respond to this blended shock, particularly in terms of housing‬
‭consumption.‬

‭Housing choices are central to individual well-being. The decision to remain in a home or move‬
‭to a new location could impact access to certain labor markets, health care systems, school districts, and‬
‭other amenities. Movers must decide where to relocate, and the characteristics of their neighborhood may‬
‭affect themselves or other members of their household through environmental or peer effects (Chyn and‬
‭Katz, 2021). They must also decide whether to rent or purchase their new residence, an investment‬
‭decision that may impact wealth creation and intergenerational mobility.‬

‭Theoretically, disasters affect housing choices through both demand and supply channels. The‬
‭destruction of local amenities as well as increased risk salience (or “new news”) pulls down the demand‬
‭to reside in impacted areas. Simultaneously, disasters decrease the supply of inhabitable housing.‬
‭Residents of these damaged units are forced to find alternative shelter, prompting various degrees of‬
‭relocation. For homeowners, relocation decisions may coincide with repairs and homeselling‬
‭considerations. These supply and demand dynamics evolve according to a multitude of factors including‬
‭the magnitude of disaster aid and relief. Empirical evidence of the general equilibrium effects of disasters‬
‭indicate higher residential mobility coupled with stagnation in housing market transactions (Boustan et‬
‭al., 2020; Zivin et al., 2023).‬

‭It is difficult, however, to distinguish the causal effect of disaster damage from the aggregate‬
‭economic shock due to the lack of administrative datasets detailing household-level exposure. Moreover,‬
‭damage is endogenous to a variety of factors including individual risk preferences and mitigation‬
‭measures as well as local investment in infrastructure and emergency preparations. These correlates may‬
‭introduce selection bias into estimates of average treatment effects on individual outcomes. The literature‬
‭addresses these challenges by comparing outcomes of all individuals in a disaster-struck area with‬
‭outcomes of observably similar individuals in unaffected places (Vigdor, 2007; Groen and Polivka, 2008;‬
‭Deryugina et al., 2018; Boustan et al., 2020). Another strand of the literature restricts analyses‬‭within‬‭a‬
‭disaster area, relying on local variation in damage intensity to identify causal effects (Hartley and‬
‭Gallagher, 2017; Bleemer and van der Klauww, 2019; Billings et al., 2022; Gallagher et al., 2023). These‬
‭techniques, however, estimate the average treatment effect of living in damaged areas rather than the‬
‭average treatment effect of damage itself.‬

‭In this paper, I estimate the average treatment effects of household-level damage using a fuzzy‬
‭regression discontinuity design in the context of Hurricane Harvey, which damaged more than 200,000‬
‭homes in Houston, Texas in 2017. I leverage the relationship between flooding and a home’s elevation,‬
‭exploiting a discontinuous increase in damage from $0 to approximately $48,000 once water reaches the‬
‭first floor. I follow Dong and Kolesar (2023) and implement a donut design, allowing for valid inference‬
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‭despite measurement error in the running variable. To my knowledge, I offer the first causal estimates of‬
‭household-level damage on individual outcomes.‬

‭I provide evidence of the hyper-local nature of disaster damage and response. In particular, I‬
‭construct a household-level damage variable and exploit elevation differences between homes located in‬
‭the same subdivisions, finding substantial variation in damage that causes a divergence in neighborhood‬
‭and housing choices. My household-level results bolster the findings in the literature that leverages‬
‭aggregate damage as the level of treatment.‬

‭While residential mobility spiked after Hurricane Harvey, Billings et al. (2022) and Gallagher et‬
‭al. (2023) document little difference in out-of-Houston migration rates for those living in flooded and‬
‭non-flooded census blocks. Similarly, I find parallel trends in housing transactions across damaged and‬
‭non-damaged subdivisions, illustrating how local-area damage does not drive aggregate movement‬
‭patterns. The lack of correlation with household movements is surprising given the established connection‬
‭between local damage intensity and other individual outcomes in the literature.‬

‭My analysis, however, highlights the importance of‬‭household-level‬‭damage in individual‬
‭decision making despite the lack of association at the local level. I find that exposure to property damage‬
‭makes homeowners less likely to sell their homes relative to their non-flooded neighbors, particularly‬
‭during the first year of the recovery process. Homeowners on the margin of selling may delay that‬
‭decision as they repair their homes. Moreover, post-disaster construction-labor shortages can prolong‬
‭rebuilding efforts, and the full extent of disaster aid and insurance payments often takes months to‬
‭materialize.‬

‭Despite decreasing housing transactions, I estimate that damage induces homeowners to move‬
‭and relocate in the initial stages of the recovery process. This six-month short-run effect is dominated by‬
‭local moves within the Houston metropolitan area. The estimated effect on move propensity attenuates‬
‭over the recovery period, but I document a persistent divergence in the distance and location of post-storm‬
‭residential choices. My results indicate that flood damage makes people less likely to move long‬
‭distances, translating to more within-county moves and fewer out-of-county relocations.‬

‭Not only does damage affect locational choices, but I provide evidence that the household-level‬
‭shock leads to a transition out of homeownership. In particular, I estimate that $10,000 of damage causes‬
‭a 1 percent decrease in homeownership. The estimated effect widens when restricting the sample to‬
‭movers, with an estimated 8 percent average decrease in homeownership relative to non-flooded‬
‭neighbors who moved after the storm. The homeownership shock occurred during a period of substantial‬
‭home-price appreciation in Houston, where the average sale price increased 42 percent between 2017 and‬
‭2022. Back-of-the-envelope calculations suggest $175,000 of potential lost wealth for the average‬
‭household who transitioned into renter occupancy because of flood damage.‬

‭The effects on homeownership are particularly striking given that home loans through the Small‬
‭Business Administration (SBA) are the federal government’s dominant form of individual-level assistance‬
‭after natural disasters (Collier and Ellis, 2021). Billings et al. (2022) discuss the qualification hurdles for‬
‭SBA loans and how their regressive allocation may limit their effectiveness to the marginal homeowner‬
‭exposed to damage. This limitation may explain the damage-induced decrease in homeownership after‬
‭Hurricane Harvey.‬

‭Despite the combined shock to shelter and wealth, I find that flooded households are more likely‬
‭to sort into higher-income census tracts in the aftermath of Hurricane Harvey. Conditional on moving,‬
‭flood damage is associated with the consumption of newer and more expensive homes. This relative‬
‭improvement in physical and socioeconomic environments mirrors the long-run recovery patterns‬
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‭documented in the disaster literature (Sacerdote, 2012; Deryugina et al., 2018; Deryugina and Molitor,‬
‭2020). Given the importance of place-based spillover effects, the long-run welfare implications of‬
‭suffering flood damage remain an open area of research.‬

‭The rest of my paper is structured as follows. Section 2 summarizes the natural disaster literature‬
‭and how individuals respond to environmental shocks. Section 3 offers an overview of Hurricane Harvey‬
‭and introduces the area of Houston that I analyze. Section 4 summarizes the sources of data and the‬
‭analytical sample. Section 5 presents my empirical strategy, and Section 6 explores the validity of my‬
‭approach. The main results are provided in Section 7, and I summarize the overall contribution of this‬
‭project in Section 8.‬

‭2‬ ‭Literature Review‬
‭Advances in quasi-experimental methods spurred a renaissance in the disaster literature that began with‬
‭analyses of the victims of Hurricane Katrina. Hurricane Katrina survivors suffered in the short run, but‬
‭negative average effects dissipated over time across a range of outcomes, including mortality (Deryugina‬
‭and Molitor, 2020), and employment and earnings (Vigdor, 2007; Groen and Polivka, 2008; Deryugina et‬
‭al., 2018). These papers all use some variation of a difference-in-differences framework, where the‬
‭treatment group is a subset of individuals living in areas that were directly impacted by Hurricane Katrina‬
‭and the control group consists of observably-similar individuals elsewhere in the United States. The‬
‭estimands in these studies are generally interpreted as the average treatment effect of living in a disaster‬
‭region, which reflects a weighted average across the spectrum of individual-level disaster exposure. For‬
‭example, this weighted average includes the response of renter-occupied households as well as‬
‭homeowners whose property may or may not have been damaged. This average treatment effect is‬
‭particularly informative for evaluating community-wide impacts and recovery efforts across a region.‬

‭A parallel group of papers analyze the impacts of Hurricane Katrina by restricting comparisons of‬
‭individuals living within the disaster area. Sacerdote (2012) documents a short-run decline and‬
‭commensurate rebound in academic performance for Louisiana students who evacuated compared to their‬
‭non-evacuating peers. Gallagher and Hartley (2017) leverage local flood variation in New Orleans and‬
‭find that residents in the most flooded census blocks experience short-term spikes in financial distress‬
‭relative to those in less exposed areas. Bleemer and van der Klaauw (2019) extend this analysis by‬
‭examining how housing choices and household composition vary by census-block flood intensity. They‬
‭find an immediate increase in move propensity that is persistently positive for more than a decade.‬
‭Homeowners in New Orleans’ inundated census blocks were 10 percentage points less likely to own a‬
‭home by the end of the ten-year period.‬

‭More recently, a pair of papers has applied the census-block flood intensity approach to identify‬
‭the impacts of Hurricane Harvey on individuals in Houston, Texas. Using hydrologic data from the‬
‭Federal Emergency Management Agency (FEMA), Billings et al. (2022) calculate the weighted average‬
‭flood depth of developed land for each census block to explore differential responses to damage based on‬
‭access to insurance and credit. They find no signs of systematic financial distress for households living in‬
‭the 100-year floodplain, an area where flood insurance takeup rates are higher. Households who live in‬
‭flooded census blocks‬‭outside‬‭of the 100-year floodplain‬‭experience disproportionate increases in‬
‭delinquent debt and bankruptcy. The lack of flood insurance in these areas makes residents more reliant‬
‭on disaster assistance, but the allocation of these transfers is regressive and fails to counteract initial‬
‭inequalities in financial health. Gallagher et al. (2023) apply the same empirical strategy to analyze‬
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‭investment in human capital, finding a reduction of student loans for college-aged individuals living in‬
‭flooded census blocks relative to their peers in other parts of Houston. These effects are prevalent in areas‬
‭with higher levels of homeownership, suggesting a relationship between disaster damage and‬
‭consumption and investment decisions.‬

‭The emphasis on census-block-level flooding illustrates the intuitive connection between disaster‬
‭damage and individual responses. While all individuals in a disaster area may be indirectly impacted by‬
‭the aggregate economic shock, the first-order concern for most disaster mitigation and relief efforts is to‬
‭address the direct effects of these events. The identifying assumption of the flood-intensity approach‬
‭relies on changes in outcomes of individuals in less-flooded census blocks providing a useful‬
‭counterfactual to changes in outcomes for those in more-flooded census blocks (conditional on observable‬
‭geospatial and socioeconomic factors). The literature supports this assumption by documenting the low‬
‭explanatory power of pre-disaster census-block characteristics on flood intensity. The absence of‬
‭correlation in aggregate data, however, does not imply individual-level exogeneity of flood exposure, and‬
‭there may still be concerns of household selection across or within census blocks based on flood risk or‬
‭unobservable factors.‬

‭While census blocks are the smallest geographic unit defined by the Census Bureau, they are‬
‭typically delineated by physical features rather than by the characteristics of inhabitants. I contribute to‬
‭this literature by restricting comparisons to people living in the same subdivisions, a locally-defined unit‬
‭that is more homogenous across individual-level characteristics.‬‭1‬ ‭Moreover, I leverage the quasi-random‬
‭peak water level reached in these subdivisions during Hurricane Harvey, allowing for the identification of‬
‭the average treatment effects of household-level disaster damage.‬

‭3‬ ‭Hurricane Harvey and Houston Texas‬
‭Hurricane Harvey landed in Texas in August 2017, producing record-level rainfall that inundated more‬
‭than 200,000 homes and caused $125 billion in direct damage. Figure 1 illustrates the widespread‬
‭flooding across the Houston metropolitan statistical area (MSA) by mapping the location of emergency‬
‭rescue requests throughout the region.‬

‭1‬ ‭See Table 2 for a comparison of within-group variation of housing characteristics for subdivisions and census‬
‭blocks.‬

‭4‬



‭Figure 1: Hurricane Harvey Rescue Requests‬

‭Notes: The zoomed-in box displays the area surrounding the Addicks and Barker Reservoirs (shaded in dark gray).‬
‭Source: New York Times (2017)‬

‭One of the major empirical challenges in the natural disaster literature is the endogeneity of‬
‭damage. In the context of flooding, risk-averse individuals may select away from water sources or‬
‭implement mitigation measures (e.g., the installation of flood vents). Others may value water as an‬
‭amenity and prefer to live in close proximity to the natural resource, increasing their risk of flooding.‬
‭Endogeneity concerns extend beyond individuals, as community-level infrastructure investment and‬
‭maintenance are important determinants of local damage.‬

‭The Addicks and Barker Reservoirs highlighted in Figure 1 serve as Houston’s primary flood‬
‭infrastructure, as their earthen dams prevent runoff from the Katy Prairie from inundating the city center‬
‭during storms. The Army Corps of Engineers developed the reservoirs in the 1940s by constructing the‬
‭dams and acquiring 25,000 acres of abutting land. This government-owned land is designed to‬
‭temporarily detain rainfall and allow for controlled drainage into the Gulf of Mexico (Furrh and Bedient,‬
‭2023).‬

‭Unlike lake-forming reservoirs, the government-owned land is perennially dry outside of extreme‬
‭weather and is utilized as wooded parks, athletic fields, and other alternative uses, effectively masking its‬
‭flood risk to surrounding suburbs. Moreover, the reservoirs are constructed as giant detention basins,‬
‭creating a unique flooding mechanism that further distorts the salience of flood risk. While inland flood‬
‭exposure typically depends on proximity to flowing water, Panel A of Figure 2 shows how the reservoirs‬
‭create a pool based on a tub concept, where water rises uniformly with the basin irrespective of the‬
‭location of water flow.‬
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‭Figure 2: Flooding Mechanism‬

‭Panel A: General Tub Concept‬

‭Panel B: Addicks and Barker Reservoir Overview‬

‭Source: O’Neil (2020) and Bloom (2017).‬

‭Panel B illustrates how Hurricane Harvey’s unprecedented rainfall filled the Addicks and Barker‬
‭Reservoirs, forcing water above the government-owned land for the first time and flooding thousands of‬
‭homes. These homes lie outside of the 100-year floodplain, a classification that serves as the primary‬
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‭flood-risk signal in housing markets. I leverage the relatively unknown risk and unique flooding‬
‭mechanism of the Addicks and Barker Reservoirs to circumvent selection issues that challenge the‬
‭identification of causal effects of disaster damage on individual outcomes.‬

‭4‬ ‭Data Sources and Sample Construction‬
‭I begin with the universe of owner-occupied housing units that were located in the Addicks and Barker‬
‭Watersheds at the time of Hurricane Harvey.‬‭2‬ ‭Residential property data are obtained from the Harris and‬
‭Fort Bend central appraisal districts and include the names of homeowners, occupancy status, property‬
‭values, and physical housing characteristics (e.g., home size and year of construction).‬‭3‬

‭Table 1 summarizes these characteristics within the two watersheds, where there are roughly‬
‭100,000 homes distributed across 2,200 subdivisions. These homes were typically constructed in the‬
‭mid-1990s, but homes in the Addicks Watershed tend to be smaller and lower-valued compared to homes‬
‭in the Barker Watershed.‬

‭Table 1: Summary Statistics‬

‭Mean (Standard Deviation)‬ ‭Addicks Watershed‬ ‭Barker Watershed‬

‭Year of Construction‬ ‭1995 (10)‬ ‭1994 (11)‬

‭Square Feet‬ ‭2230 (728)‬ ‭2707 (952)‬

‭2017 Appraised Value‬ ‭$183,538 (82858)‬ ‭$288,806 (134241)‬

‭Estimated Damage‬ ‭$1,333 (13078)‬ ‭$6,681 (31556)‬

‭Maximum LiDAR Ground Elevation‬ ‭1,520” (121)‬ ‭1,431” (152)‬

‭Number of Subdivisions‬ ‭1,637‬ ‭852‬

‭Number of Owner-Occupied Homes‬ ‭65,735‬ ‭35,022‬

‭Notes: Summary statistics of owner occupied single-family residential properties located in the Fort Bend and Harris County portions of the‬
‭Addicks and Barker Watersheds.‬

‭Measuring Disaster Damage‬
‭Since no administrative datasets detail household-level damage during Hurricane Harvey, I approximate‬
‭this magnitude using pre- and post-storm property values from the Harris and Fort Bend central appraisal‬
‭districts. In particular, I calculate‬

‭(1)‬ ‭,‬‭𝐷𝑎𝑚𝑎𝑔‬‭𝑒‬
‭𝑗‬

= ‭𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑢‬‭𝑒‬
‭𝑗‬,‭2017‬

− ‭𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑢‬‭𝑒‬
‭𝑗‬,‭2018‬

‭where‬ ‭measures the market value of the structure of property‬‭j‬‭(not including land value)‬‭𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑢‬‭𝑒‬
‭𝑖‬,‭𝑡‬

‭in year‬‭t‬‭. The 2017 values should not be influenced‬‭by Hurricane Harvey because those numbers were‬

‭3‬ ‭Portions of Waller County are located in the Addicks and Barker Watersheds, but these are mostly nonresidential‬
‭areas that lie several feet above the reservoirs.‬

‭2‬ ‭The Addicks and Barker Watersheds are contiguous watersheds in northwest Houston that both contain reservoirs‬
‭with their respective names.‬
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‭calculated and certified before the storm occurred.‬‭4‬ ‭On the other hand,‬ ‭estimates the‬‭𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑢‬‭𝑒‬
‭𝑖‬,‭2018‬

‭value of property as of January 1st, 2018, which was approximately four months after Hurricane Harvey.‬
‭Consequently, Equation (1) reflects the change in property value due to disaster damage net of general‬
‭home-price changes in 2017 and repairs that occurred before year-end. Summary statistics in Table 1‬
‭indicate an average damage of $1,333 and $6,681 in the Addicks and Barker Watersheds, respectively, but‬
‭the size of the standard deviations reveal substantial variation.‬

‭Although Texas’ central appraisal districts are required to value property at 100% of its market‬
‭value as of January 1st of each year, the lack of mandatory sales-price disclosure challenges the accuracy‬
‭of these estimates. Anecdotal evidence, however, suggests that public appraisers have historically‬
‭accessed sales data, and the accuracy of market values for typical homes in large subdivisions are less of a‬
‭concern (Texas Tribune, 2014; City of Austin, 2020). Appendix A1 details the strong, positive‬
‭relationship between the damage estimates from Equation (1) and FEMA’s estimates of flood depth,‬
‭supporting the validity of this measure.‬‭5‬

‭Measuring Property Elevation‬
‭My identification strategy outlined in Section 5 relies on using property-level elevation as the running‬
‭variable in a regression discontinuity framework. In particular, properties are exposed to flood damage‬
‭when water exceeds their first floor elevation (FFE), which I approximate using aerial light detection and‬
‭ranging (LiDAR) data (TNRIS, 2022). Figure 3 exemplifies the distribution of LiDAR points that‬
‭measure the ground-surface elevation across two residential parcels in the Barker Reservoir.‬‭6‬

‭6‬ ‭Based on conversations with housing developers, I assume that each property’s FFE is equal to its maximum‬
‭ground elevation. This approximation results in measurement error in my elevation running variable, and I explore‬
‭the structure of this error in Appendix A2.‬

‭5‬ ‭As an alternative approach, I use FEMA’s flood-depth estimates as the treatment variable, and results are provided‬
‭in Appendix ?.‬

‭4‬ ‭Some taxing jurisdictions allow for the reappraisal of property values after disasters. It is unclear if the central‬
‭appraisal districts retroactively updated their certified tax rolls, and these updates would bias my damage estimates‬
‭toward zero.‬
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‭Figure 3: Property-Level Ground Elevation‬

‭Notes: Aerial LiDAR ground elevation points (measured in inches) for two residential properties in Oak Park Trails Subdivision in the Barker‬
‭Reservoir. Property parcel shapefiles are available at the Harris and Fort Bend Central Appraisal Districts. Aerial LiDAR data are accessed from‬
‭TNRIS (2022).‬

‭Outcomes‬
‭Given my analytical sample of owner-occupied households, I use deed transactions from CoreLogic’s‬
‭Owner Transfer dataset to determine if people sell their homes after Hurricane Harvey. I consider a home‬
‭as sold if a deed associated with the property is recorded after August 25th, 2017, when the storm stalled‬
‭over Houston. Approximately 15 percent of the sample recorded a deed within the 30 months leading up‬
‭February 2020.‬

‭In order to examine homeowners’ relocation decisions, I link the sample to a nationwide database‬
‭of address histories from Infutor Data Solutions, an aggregator of address data that compiles voter files,‬
‭property deeds, USPS address changes, etc.‬‭7‬ ‭The linked dataset allows me to analyze alternative measures‬
‭of residential mobility such as out-of-county and out-of-state migration as well as the number of miles‬
‭between pre- and post-storm residences. I also observe households’ decisions regarding homeownership‬
‭and housing characteristics by linking the dataset to CoreLogic’s statewide property tax roll data.‬
‭Census-tract socioeconomic factors of post-storm residences are obtained from the 2020 American‬
‭Community Survey.‬

‭7‬ ‭The details of my linking process are provided in‬‭Appendix A3.‬

‭9‬



‭5‬ ‭Empirical Framework‬
‭The idiosyncrasies of Houston’s reservoirs described in Section 3 offer a unique setting to identify the‬
‭causal effects of disaster damage. My empirical strategy involves the comparison of outcomes for‬
‭households in the same subdivision who live just above and just below the peak water level reached in the‬
‭reservoirs during Hurricane Harvey. The US Army Corps of Engineers (2020) report that the Addicks and‬
‭Barker Reservoirs reached peaks of 1309.2 and 1219.2 inches above mean sea level, respectively, which I‬
‭use as thresholds in a fuzzy regression discontinuity design.‬

‭Consider a theoretical experiment where identical homes are randomly assigned different “doses”‬
‭of flooding. The average treatment effect of dose‬‭d‬‭could be estimated by the difference between mean‬
‭outcomes for those treated with‬‭d‬‭and non-flooded households.‬‭8‬ ‭Flood exposure, however, is a nonrandom‬
‭event at a hyper-localized level due in part to individuals’ mitigation measures (e.g., the installation of‬
‭flood walls or flood vents), community development decisions (e.g., drainage infrastructure), and‬
‭atmospheric and topographic variation. Table 2 documents heterogeneity in property characteristics across‬
‭a range of geospatial units in my sample.‬‭9‬ ‭Properties are relatively homogenous within subdivisions, but‬
‭there remains variation in the value and size of homes as well as in elevation. Elevation (and therefore‬
‭flood risk) correlates with the value, size, age, and other (potentially unobservable) property‬
‭characteristics that may also be related to outcomes, introducing omitted variable bias into the ordinary‬
‭least squares estimator.‬

‭Table 2: Average (Within-Group) Standard Deviation‬

‭Group Level‬
‭(Number of Groups)‬

‭Market Value‬
‭(2010-2016)‬

‭Home‬
‭Size‬

‭Year‬
‭Built‬

‭Maximum Ground‬
‭Elevation (Inches)‬

‭Watershed (2)‬ ‭$101,034‬ ‭812sqft‬ ‭10.7‬ ‭138”‬

‭Zip Code (10)‬ ‭$81,951‬ ‭753sqft‬ ‭9.5‬ ‭78”‬

‭Census Block (3101)‬ ‭$31,026‬ ‭445sqft‬ ‭2.6‬ ‭11”‬

‭Subdivisions (2196)‬ ‭$20,865‬ ‭383sqft‬ ‭1.6‬ ‭10”‬
‭Notes: Each row contains averages of within-group standard deviations at progressively smaller levels. For example, the standard deviation of‬
‭home size is 729sqft and 895sqft in the Addicks and Barker Watersheds, respectively, and the average is 812sqft across the two watersheds.‬
‭Averages are similar when weighted by the number of properties in each group.‬

‭I address this concern by analyzing properties at elevations near the peak water level that was‬
‭reached in the Addicks and Barker Reservoirs during Hurricane Harvey. Property and household‬
‭characteristics, as well as potential outcomes, should be smooth as you rise in elevation through the peak‬
‭water level because Hurricane Harvey’s precise magnitude was unknown‬‭a priori‬‭. Households could not‬
‭predict the peak water level when making residential-sorting decisions months or years before the storm.‬
‭The only difference between homes slightly above and below this level should be flood exposure. This‬

‭9‬ ‭For example, the standard deviation of home size is 729sqft and 895sqft in the Addicks and Barker Watersheds,‬
‭respectively, and the average of 812sqft across the two watersheds. The averages are similar when weighted by the‬
‭number of properties in each group.‬

‭8‬ ‭The‬‭average treatment effect‬‭at dose‬‭d‬‭describes‬‭the level effect of the dose-response relationship. Alternatively,‬
‭the slope effect captures‬‭average causal response‬‭to an incremental change in the dose at‬‭d‬‭(Callaway‬‭et al., 2021).‬
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‭setting approximates a local randomized experiment, where quasi-identical distributions of homes receive‬
‭different damage doses.‬

‭My identification strategy exploits the fact that the intensity of flood damage decreases with a‬
‭property’s elevation up to the peak water level. For example, National Flood Services LLC estimates‬
‭approximately $37,000 in structural damage for a 2,500sqft, one-story home that is exposed to six inches‬
‭of water compared to $24,000 in damage for the same home exposed to a single inch. No damage is‬
‭expected for homes lying above water (FloodSmart, 2019). While the hydrology literature documents‬
‭several types of flood damage functions, a common characterization is a discontinuous increase in‬
‭damage at the first floor elevation (Theodosopoulou et al., 2022). Figure 4 illustrates a piecewise linear‬
‭damage function with a discontinuity where the first floor elevation equals the peak water level.‬

‭Figure 4: Theoretical Damage Function‬

‭Notes: The running variable is the difference between the peak water level and property‬‭j‬‭’s first floor‬‭elevation. For example, a property whose‬
‭first floor elevation is one foot below the peak water level has a running variable‬ ‭.‬‭𝑟‬

‭𝑗‬
= ‭12‬

‭I formalize this approach to estimate the average treatment effects of damage by using a fuzzy‬
‭regression discontinuity design, where the expected damage function jumps discontinuously at the peak‬
‭water level. I include subdivision fixed effects to restrict comparisons to individuals who live in‬
‭observably-equivalent homes but on different sides of the peak water level.‬

‭As mentioned in Section 4, I approximate each property’s first floor elevation with its maximum‬
‭ground elevation, admittedly using a running variable with measurement error.‬‭10‬ ‭Following Dong and‬

‭10‬ ‭Dong and Kolesar (2023) find that nearly a quarter of regression discontinuity designs that are published in top‬
‭economics journals suffer from this threat to identification. Their proposed donut solution provides for valid‬
‭inference for the local average treatment effect of units with values of the‬‭mismeasured‬‭running variable‬‭near the‬
‭true threshold. In contrast, the canonical regression-discontinuity framework that estimates the local average‬
‭treatment effect of units with values of the‬‭true‬‭running variable around the same threshold.‬
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‭Kolesar (2023), I implement a donut design to allow for valid inference despite mismeasured elevation.‬
‭The donut solution requires two key assumptions. First, potential outcomes must be smooth in the‬
‭mismeasured variable, which may hold mechanically as measurement error in the running variable tends‬
‭to smooth conditional expectation functions. To illustrate this phenomenon in my context, I simulate a‬
‭$20,000 damage discontinuity as a function of property elevation, comparing measurements with and‬
‭without 12-inches of elevation error. Panel A of Figure 5 reveals how measurement error distorts the true‬
‭discontinuity by smoothing the conditional expectation function.‬

‭The second assumption requires that the mismeasured running variable correctly classifies‬
‭treatment assignment. The simulated measurement error on the right side of Panel A, however, illustrates‬
‭how some undamaged (damaged) homes are misclassified below (above) the peak water level. Panel B‬
‭illustrates how removing the misclassified observations resolves the measurement-error issue. In‬
‭particular, implementing a 12-inch donut in the presence of 12 inches of measurement error results in a‬
‭point estimate that is much closer to the simulated discontinuity. Note that the standard challenges of‬
‭donut trimming apply in this context (e.g., lost sample size and a modified local average treatment effect).‬

‭Figure 5: Simulated Damage Function‬

‭Panel A: Regression Discontinuity‬

‭Panel B: Regression Discontinuity with 12-Inch Donut‬

‭Notes: Figure 5 plots the average damage at each elevation inch for simulated data with a $20,000 discontinuity at‬ ‭. The left sides of Panels‬‭𝑟‬ = ‭0‬
‭A and B illustrate the mean plots in the presence of accurate elevation data. The right sides of Panels A and B illustrate the mean plots in the‬
‭presence of 24 inches of measurement error (12 inches above and below the true value). Panel B depicts dashed lines at ±12 inches, revealing‬
‭how sample trimming can remove the measurement-error distortion of the conditional mean plots.‬
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‭To implement the donut fuzzy regression discontinuity design, I start by estimating the‬
‭discontinuity in damage around the peak water levels reached in the Addicks and Barker Reservoirs. I‬
‭standardize the running variable by subtracting property‬‭j‬‭’s maximum ground elevation from the peak‬
‭water level of the reservoir in which‬‭j‬‭is located,‬‭resulting in a measure of the relative inches below the‬
‭threshold. The estimating equation of the first stage is‬

‭(2)‬ ‭for‬ ‭,‬‭𝐷𝑎𝑚𝑎𝑔‬‭𝑒‬
‭𝑗‬‭ ‬

= α
‭𝑛‬

+ γ‭𝑟‬
‭𝑗‬

+ β‭1‬{‭𝑟‬
‭𝑗‬
‭≥0‬} + ψ‭𝑟‬

‭𝑗‬
‭1‬{‭𝑟‬

‭𝑗‬
‭≥0‬} + ξ

‭𝑖‬
‭𝑟‬ ∈ [‭ℎ‬

‭𝑙‬
, ‭ℎ‬

‭𝑙‬
‭𝑑𝑜𝑛𝑢𝑡‬] ∪ [‭ℎ‬

‭𝑟‬
‭𝑑𝑜𝑛𝑢𝑡‬, ‭ℎ‬

‭𝑟‬
]

‭where‬‭Damage‬‭is determined by Equation (1),‬ ‭represent subdivision-level fixed effects,‬‭r‬‭is the‬α
‭𝑛‬

‭standardized running variable,‬ ‭is an indicator equaling 1 if‬‭j‬‭lies below the peak water level,‬‭1‬{‭𝑟‬
‭𝑖‬
‭≥0‬} ‭ℎ‬

‭𝑙‬

‭and‬ ‭are the left- and right-sided bandwidths, respectively, and‬ ‭and‬ ‭are the left- and‬‭ℎ‬
‭𝑟‬

‭ℎ‬
‭𝑙‬
‭𝑑𝑜𝑛𝑢𝑡‬ ‭ℎ‬

‭𝑟‬
‭𝑑𝑜𝑛𝑢𝑡‬

‭right-side lengths of the donut.‬
‭There are two primary motivations for the fuzzy component of the model. First, the magnitude of‬

‭damage depends on the volume of water exposure to a home. The fuzzy design allows for causal‬
‭identification of average treatment effects in the presence of different treatment intensities. Second, the‬
‭probability of damage is non-binary across elevation because of other idiosyncrasies and determinants of‬
‭flooding, i.e., there exists subsets of the population whose damage was not determined by their elevation‬
‭relative to the peak water level. The fuzzy design allows for the identification of the local average‬
‭treatment effect of the households who flooded because of this relative elevation (i.e., the “compliers”).‬

‭The reduced-form regression equation illustrates how elevation is used to estimate the effect of‬
‭flood damage on outcomes. Specifically, the reduced-form equation is‬

‭(3)‬ ‭,‬‭𝑌‬
‭𝑗‬

= α
‭𝑛‬

+ π‭𝑟‬
‭𝑗‬

+ λ‭1‬{‭𝑟‬
‭𝑗‬
‭≥0‬} + ϕ‭𝑟‬

‭𝑗‬
‭1‬{‭𝑟‬

‭𝑗‬
‭≥0‬} + η

‭𝑗‬
‭𝑟‬ ∈ [‭ℎ‬

‭𝑙‬
, ‭ℎ‬

‭𝑙‬
‭𝑑𝑜𝑛𝑢𝑡‬] ∪ [‭ℎ‬

‭𝑟‬
‭𝑑𝑜𝑛𝑢𝑡‬, ‭ℎ‬

‭𝑟‬
]

‭where‬‭Y‬‭is the outcome of interest. Note that the parameter‬ ‭is the local average treatment effect of living‬λ
‭below the peak water level (or the intention-to-treat effect). The local average treatment effect of flood‬
‭damage can be recovered by scaling‬ ‭by the parameter‬ ‭from the first stage.‬λ β

‭The causal interpretation of these parameters (and their ratio) relies on three key identifying‬
‭assumptions in my setting. First, there must exist a relationship between a property’s maximum ground‬
‭elevation and flood damage that changes as you approach the edges of the donut surrounding the peak‬
‭water level. Second, maximum ground elevation must accurately assign instances where flood damage‬
‭occurred. Third, the exclusion restriction requires potential outcomes to be smooth through the peak water‬
‭level and for the peak water level to affect outcomes‬‭only through‬‭its impact on flood damage. I evaluate‬
‭these assumptions in Section 6.‬

‭6‬ ‭Empirical Validation‬
‭I begin by exploring the damage-elevation relationship in the Addicks and Barker Watersheds that is‬
‭specified in Equation (2). Figure 6 reveals a smooth curve similar to the simulation results with‬
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‭measurement error. There are fewer observations to the right of the threshold because the reservoirs’ peak‬
‭water levels only extended about three feet above the government-owned land and into neighborhoods.‬‭11‬

‭Figure 6: First Stage‬

‭Notes: The coefficient plot is generated by rounding elevation to the nearest inch and estimating a subdivision fixed effects model saturated in‬
‭1-inch elevation dummy variables. The sample mean of the outcome variable is added back to the coefficient estimates for illustrative purposes.‬
‭The red lines correspond to the preferred sample trimming at -18.7 and 6.6 inches below the peak water level.‬

‭Based on the measurement error structure explored in Appendix A2, I trim the sample from -18.7‬
‭to 6.6 inches to ensure that ground elevation reasonably assigns the occurrence of flood damage. Using‬
‭this donut design, I estimate an average increase of $47,795 in flood damage for homes lying just below‬
‭the peak water level. Robustness tests in Appendix 5 corroborate the stability of my estimates at different‬
‭donut sizes and bandwidths.‬

‭The third identifying assumption requires potential outcomes to be smooth through the peak‬
‭water level and for the peak water level to affect outcomes only through flood damage. While this is‬
‭inherently untestable, I provide support for this claim by documenting a relatively constant relationship‬
‭between elevation and pre-storm property characteristics. Figure 7 illustrates the similarity in housing‬
‭characteristics above and below the peak water level, which is unsurprising as Harvey’s precise‬
‭magnitude was unpredictable when households moved into these neighborhoods. The lack of pre-storm‬
‭patterns supports the assumption that a property’s distance from the peak water level only affected‬
‭households through the impact of flood damage.‬

‭11‬ ‭An additional asymmetry appears around the threshold because of the right-skewness of elevation measurement‬
‭error that is discussed in Appendix A2.‬
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‭Figure 7: Pre-Storm Property Characteristics and Elevation‬

‭Panel A: Year of Construction‬

‭Panel B: Home Size‬

‭Notes: Panels A and B replace the outcome in Equation (2) with the property’s year of construction and structure square footage, respectively.‬
‭The regression estimates and lines are based on Equation (2), a local linear regression with uniform kernels and a preferred bandwidth of‬
‭[-120.0,-18.7] and [6.6,36.0]. Standard errors are clustered at the neighborhood level. The coefficient plots are generated by rounding elevation to‬
‭the nearest inch and estimating a subdivision fixed effects model saturated in 1-inch elevation dummy variables. The sample mean of the outcome‬
‭variable is added back to the coefficient estimates for illustrative purposes. The red lines correspond to the preferred sample trimming at -18.7 and‬
‭6.6 inches below the peak water level.‬

‭7‬ ‭Results‬
‭Natural disasters are associated with increased residential mobility (Boustan et al., 2020). Billings et al.‬
‭(2022) and Gallagher et al. (2023) indicate a similar pattern after Hurricane Harvey, when out-of-Houston‬
‭migration spiked immediately after the storm. Migration rates, however, were roughly the same in flooded‬
‭and non-flooded census blocks, suggesting that local level damage played little role in individuals’‬
‭mobility decisions.‬

‭While individuals may not differentiate relocation decisions based on local damage intensity,‬
‭Panel A of Figure 8 indicates the importance of property-level damage in influencing behavior.‬
‭Households exposed to $10,000 of flood damage are 2 percentage points (40 percent) more likely to move‬
‭out of their pre-Harvey residence within six months of the storm compared to their non-flooded neighbors‬
‭who lived above the peak water level. Panel B illustrates the estimated cumulative impact on residential‬
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‭mobility over the 10 quarter post-period. The spike in mobility is not captured in 3Q2017 data as‬
‭Hurricane Harvey stalled over Houston during the last week of August. The initial wave of moves occurs‬
‭in 4Q2017 and 1Q2018 before attenuating through 2019. Panels C and D reveal differential dynamics‬
‭across move types. Damage causes an immediate increase for within-county moves that persists for nearly‬
‭two years. On the other hand, there is a delayed impact on out-of-county moves that lasts several quarters‬
‭before dissipating. Longer distance moves may require more planning and carry higher transaction costs‬
‭that prevent an instantaneous response during disaster events.‬

‭Figure 8: Residential Mobility‬

‭Notes: The point estimate‬ ‭is the the estimated causal effect of $10,000 of damage, reflecting the ratio of the reduced form effect‬ ‭from‬θ
^

λ
^

‭Equation (3) and the first stage effect‬ ‭from Equation (2). Panel A is based on an indicator for Infutor observing at least one individual in‬β
^

‭household‬‭j‬‭moving between September 2017 and March‬‭2018. The regression estimates and lines are based on Equation (3), a local linear‬
‭regression with uniform kernels and a preferred bandwidth of [-120.0,-18.7] and [6.6,36.0]. Standard errors are clustered at the neighborhood‬
‭level. The coefficient plots are generated by rounding elevation to the nearest inch and estimating a subdivision fixed effects model saturated in‬
‭1-inch elevation dummy variables. The sample mean of the outcome variable is added back to the coefficient estimates for illustrative purposes.‬
‭The red lines correspond to the preferred sample trimming at -18.7 and 6.6 inches below the peak water level. Panel B plots the point estimates‬
‭and 95% confidence intervals using a cumulative outcome variable for each post-storm quarter. For example, the estimates for 1Q2018 are based‬
‭on whether at least one individual in a household moved between September 2017 and March 2018. Standard errors are clustered at the‬
‭neighborhood level.‬

‭Economic theory predicts an aggregate decrease in housing market transactions after natural‬
‭disasters that results from a combination of decreased housing stock and demand. Zivin et al. (2023)‬
‭present evidence for this phenomenon from Florida’s response to hurricanes between 2000 and 2016.‬
‭Similar to trends in residential mobility, I display the lack of relationship between local-level damage and‬
‭home sales in Figure 9. The number of home sales in high- and low-damage subdivisions track similarly‬
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‭before and after Hurricane Harvey. If anything, high-damage subdivisions suffer a stronger shock on‬
‭impact and then rebound higher for longer.‬

‭Figure 9: Housing Sales the Addicks and Barker Reservoirs’ Subdivisions‬

‭Notes: I collapse the count of CoreLogic deed transactions at the subdivision level. Subdivisions with above zero average property damage are‬
‭classified as “high damage.” The two series are residualized by quarter and rescaled by the constant term.‬

‭The results in Figure 10, however, confirm that property-level damage causes a decrease in‬
‭housing sales in the short run. I estimate that $10,000 of damage decreases homeowners’ propensity to‬
‭sell within six months by 0.3 percentage points (21 percent) relative to their non-flooded neighbors who‬
‭lived just above the peak water level. The cumulative impact grows for about a year before attenuating in‬
‭2019, suggesting that damage temporarily delays sales that would have occurred in the absence of‬
‭flooding. Homeowners on the margin of moving may choose to repair their property before selling, and‬
‭many flooded households were forced to wait months after Hurricane Harvey for full disbursement of‬
‭disaster aid or insurance payments to help fund this investment.‬
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‭Figure 10: Housing Sales‬

‭Notes: The point estimate‬ ‭is the the estimated‬‭causal effect of $10,000 of damage, reflecting the ratio of the reduced form effect‬ ‭from‬θ
^

λ
^

‭Equation (3) and the first stage effect‬ ‭from‬‭Equation (2). Panel A is based on an indicator for property‬‭j‬‭having a deed recorded between‬β
^

‭September 2017 and March 2018. The regression estimates and lines are based on Equation (3), a local linear regression with uniform kernels and‬
‭a preferred bandwidth of [-120.0,-18.7] and [6.6,36.0]. Standard errors are clustered at the neighborhood level. The coefficient plots are generated‬
‭by rounding elevation to the nearest inch and estimating a subdivision fixed effects model saturated in 1-inch elevation dummy variables. The‬
‭sample mean of the outcome variable is added back to the coefficient estimates for illustrative purposes. The red lines correspond to the preferred‬
‭sample trimming at -18.7 and 6.6 inches below the peak water level. Panel B plots the point estimates and 95% confidence intervals using a‬
‭cumulative outcome variable for each post-storm quarter. For example, the estimates for 1Q2018 are based on whether a property had a deed‬
‭recorded between September 2017 and March 2018. Standard errors are clustered at the neighborhood level.‬

‭While the effects on homeowners’ relocation and home-sale decisions attenuate over time, I‬
‭document a persistent impact on housing consumption. For example, Figure 11 illustrates the effect of‬
‭flood damage on the probability of households owning their post-Harvey residence. I estimate that‬
‭$10,000 of damage decreases homeownership by 0.8 percentage points (1 percent) through 2019. This‬
‭estimate is statistically significant at the 95 percent confidence level despite flooded and non-flooded‬
‭households changing their residences at roughly the same rate by the end of this period. The estimated‬
‭decrease in homeownership is particularly stark given that only 15 percent of the sample relocated from‬
‭their pre-storm residence during the 30-month post period.‬‭12‬ ‭Conditioning on the set of movers in Panel‬‭B‬
‭reveals a large transition out of owner occupancy. In particular, households exposed to $10,000 of damage‬
‭are 5.5 percentage points (or 8 percent) less likely to own their next residence compared to their‬
‭non-flooded peers. While smaller in magnitude, these results align with Bleemer and van der Klaauw‬
‭(2019), who find persistently lower homeownership rates among people who lived in inundated parts of‬
‭New Orleans during Hurricane Katrina.‬

‭The transition out of homeownership occurred during a period of substantial home-price‬
‭appreciation in Houston, where the average sale price increased 42 percent between 2017 and 2022. The‬
‭average pre-storm home value for households who were located below the peak water level and who‬
‭transitioned out of homeownership was roughly $245,000. Applying the average increase in sale price,‬
‭these homes would have surpassed an average of $347,000 by 2022. This appreciation combined with an‬
‭average of $73,000 of damage incurred by these households suggests approximately $175,000 of potential‬
‭lost wealth for households who transitioned into renter occupancy because of flooding.‬

‭12‬ ‭I consider moving as a necessary condition to transition into renter occupancy since the analytical sample consists‬
‭of homeowners at the time of Hurricane Harvey.‬

‭18‬



‭Figure 11: Estimated Average Treatment Effect on Homeownership‬

‭Notes: I consider an individual as a post-storm renter if they sold their home after Hurricane Harvey and did not appear in Texas appraisal-district‬
‭data at their new address before 2022. The American Community Survey indicates that a majority of interstate movers rent their new residence,‬
‭and due to data constraints I assume people who leave Texas are post-storm renters. The left side of Panel A uses the full sample including‬

‭homeowners who do not sell after Hurricane Harvey. The right side of Panel B restricts the sample to movers. The point estimate‬ ‭is the the‬θ
^

‭estimated causal effect of $10,000 of damage, reflecting the ratio of the reduced form effect‬ ‭from Equation‬‭(3) and the first stage effect‬ ‭from‬λ
^

β
^

‭Equation (2). The regression estimates and lines are based on Equation (3), a local linear regression with uniform kernels and a preferred‬
‭bandwidth of [-120.0,-18.7] and [6.6,36.0]. Standard errors are clustered at the neighborhood level. The coefficient plots are generated by‬
‭rounding elevation to the nearest inch and estimating a subdivision fixed effects model saturated in 1-inch elevation dummy variables. The‬
‭sample mean of the outcome variable is added back to the coefficient estimates for illustrative purposes. The red lines correspond to the preferred‬
‭sample trimming at -18.7 and 6.6 inches below the peak water level.‬

‭The impact of flood damage extends to the types of neighborhoods and homes where individuals‬
‭choose to live. Results in Figure 12 indicate that impacted households tend to sort into higher-valued‬
‭homes and higher-income neighborhoods. These changes in socioeconomic environment, combined with‬
‭the estimated decrease in homeownership, highlight the potential tradeoffs in a post-disaster environment.‬
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‭Figure 12: Estimated Average Treatment Effect on Neighborhood and Home Choice for Movers‬

‭Panel A: Post-Storm Home Values (2020)‬

‭Panel B: Post-Storm Census Tract Average Income (2020)‬

‭Notes: Figure 12 restricts the sample to individuals who sold their home after Hurricane Harvey and who have a post-storm address in the Infutor‬
‭data. Panel A considers only those who relocated within Texas, as I am only able to match post-storm movers to appraisal district data within the‬

‭state, while Panel B includes movers who relocated across the United States. The point estimate‬ ‭is the the estimated causal effect of $10,000 of‬θ
^

‭damage, reflecting the ratio of the reduced form effect‬ ‭from Equation (3) and the first stage effect‬ ‭from Equation (2). The regression estimates‬λ
^

β
^

‭and lines are based on Equation (3), a local linear regression with uniform kernels and a preferred bandwidth of [-120.0,-18.7] and [6.6,36.0].‬
‭Standard errors are clustered at the neighborhood level. The coefficient plots are generated by rounding elevation to the nearest inch and‬
‭estimating a subdivision fixed effects model saturated in 1-inch elevation dummy variables. The sample mean of the outcome variable is added‬
‭back to the coefficient estimates for illustrative purposes. The red lines correspond to the preferred sample trimming at -18.7 and 6.6 inches below‬
‭the peak water level.‬

‭8‬ ‭Conclusion‬
‭The natural disaster literature has documented a dynamic recovery process across a variety of outcomes‬
‭for individuals living in disaster-struck areas. I contribute to this literature by using property-level data in‬
‭a quasi-experimental design to estimate the average treatment effect of household damage exposure on‬
‭residential mobility, home sales, and other housing choices after Hurricane Harvey. I leverage the‬
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‭relatively unknown risk and unique flooding mechanism of Houston’s Addicks and Barker Reservoirs to‬
‭circumvent selection issues that challenge the identification of causal effects of disaster damage. I‬
‭overcome measurement error in the elevation running variable by sample trimming, resulting in a donut‬
‭regression discontinuity design. I examine the relationship between flooding and a home’s elevation,‬
‭exploiting a discontinuous increase in damage from $0 to approximately $48,000 once water reaches the‬
‭first floor. The results from this first stage are used to rescale reduced-form estimates to examine the‬
‭impact of the $10,000 of flood damage on housing choices.‬

‭Although local-level exposure does not necessarily correlate with household movement patterns, I‬
‭reject the notion that home sales and relocation decisions are unaffected by disaster damage. I estimate‬
‭that flood damage increases residential mobility in the short run, particularly for shorter-distance moves.‬
‭In contrast, flood damage delays home sales for about a year after Hurricane Harvey. These opposite‬
‭effects align with theoretical predictions of disaster damage making a portion of the housing stock‬
‭uninhabitable.‬

‭In addition to impacting locational choices, I provide evidence that household-level damage‬
‭pushes people out of homeownership. In particular, I estimate that $10,000 of damage causes a 1 percent‬
‭decrease in homeownership, leading to approximately $175,000 of potential lost wealth over a five year‬
‭period. Despite the combined shock to shelter and wealth, I find that flooded households are more likely‬
‭to sort into higher-income census tracts in the aftermath of Hurricane Harvey. This relative improvement‬
‭in physical and socioeconomic environments mirrors the long-run recovery patterns documented in the‬
‭disaster literature (Sacerdote, 2012; Deryugina et al., 2018; Deryugina and Molitor, 2020). Since disaster‬
‭damage pushes people out of their neighborhoods and into new economic environments, the impacts of‬
‭extreme weather may extend into other aspects of life. These neighborhood effects may augment or offset‬
‭the transition into different types of housing or housing tenure.‬

‭The totality of my results raise important questions about the effectiveness of disaster aid. For‬
‭example, the delayed effect on housing transactions may indicate that SBA loans are protecting people‬
‭from losing their homes after catastrophic events. On the other hand, disaster damage net of relief efforts‬
‭led to a substantial transition out of homeownership and into renter occupancy. The normative‬
‭implications of this transition are unclear, especially as flooded households tend to relocate into higher‬
‭income neighborhoods that may offer improved economic opportunities.‬
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‭Appendix A1: FEMA Flood Depth and Damage‬
‭Estimates‬
‭Immediately after Hurricane Harvey, FEMA began modeling flood depths (i.e., the difference between‬
‭water elevation and ground elevation) across the disaster zone. FEMA’s flood-depth data are based on a‬
‭variety of sources including observed water levels at stream gauges, remote sensing, and other inspection‬
‭data. These data are intended to be used for determining damage levels on specific structures (FEMA,‬
‭2018).‬

‭Figure A1 presents the relationship between three measures of property-level flood depth and my‬
‭estimates of flood damage in the Addicks and Barker Watersheds. FEMA’s model does not capture flood‬
‭depths below 12 inches, resulting in left-censored data grouped at zero inches. Properties where the‬
‭minimum flood depth is approximately 12 inches average almost $10,000 of damage. All three‬
‭flood-depth metrics are positively related to my damage estimates.‬

‭Figure A1: Property-Level Flood Depth and Estimated Damage‬

‭Appendix A2: Measurement Error in Elevation‬
‭One of the implications of the intra-parcel elevation variation is that I may not observe the true FFE.‬
‭Based on conversations with housing developers, I assume that each property’s FFE is equal to its‬
‭maximum ground elevation. In order to explore the error structure of this approximation, I obtain‬

‭24‬



‭validation data generated by mobile (rather than aerial) LiDAR technology that measures the elevation of‬
‭the base of each home’s front door (Cyclomedia, 2020). There is minimal overlap between the validation‬
‭data and my analytical sample, but I am able to compare the maximum ground elevation and base-of-door‬
‭elevations for 13,000 homes in other parts of Houston.‬

‭Figure A2 displays the distribution of deviations between the two measures. The maximum‬
‭ground elevation tends to be higher than the base of the front door, resulting in positive skewness.‬
‭Variation in landscaping, natural land gradients, and instrument imprecision likely explain this‬
‭overestimation. The maximum ground elevation, however, is highly predictive of base-of-door elevation,‬
‭with a 0.99 correlation coefficient and a majority of errors lying within seven inches. I use this error‬
‭structure to refine my empirical strategy in Section 5.‬

‭Figure A2: Elevation Data Deviations‬

‭In order to satisfy the second identifying assumption outlined in Section 4, the mismeasured‬
‭elevation must correctly classify when properties are damaged. In an ideal setting, I would delete‬
‭observations whose maximum ground elevation lies within the support of measurement error estimated‬
‭from the validation data. This support, however, extends from -30 to 48 inches, thereby removing my‬
‭entire sample right of the threshold. I opt for a tighter trimming that spans 80 percent of the error support‬
‭but maintains two-thirds of my sample right of the threshold.‬
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‭Appendix A3: Data Linking Process‬
‭The linking process begins by cleaning the Harris and Fort Bend Central Appraisal Districts’ property‬
‭owner name fields. Plural referential phrases (e.g., “et uxor”) and their abbreviations (e.g., “et ux.”) are‬
‭omitted as well as commonly used titles (e.g., “Mr.”, “Mrs.”, etc.). Suffixes (e.g., “Junior”, “Senior”, etc.)‬
‭are standardized and abbreviated.‬

‭In Step 1 I link more than 17,000 movers (57 percent) to the Infutor data based on an exact match‬
‭of their names and addresses at the time of Hurricane Harvey. The imperfect match rate is likely driven by‬
‭lack of standardization of names and addresses across data sources. For example, the use of a middle‬
‭initial rather than a middle name would result in a failure to match.‬

‭Figure A3: Linking Central Appraisal District Data to Infutor‬

‭I allow for more flexible matching in Step 2 using the Jaro-Winkler string-distance algorithm,‬
‭which scores the similarity of strings between 0 and 1 for no similarity and exact matches, respectively.‬
‭Since I link movers based on both names and addresses, the combined Jaro-Winkler score ranges from 0‬
‭to 2. I consider combined scores above 1.8 to be extremely accurate, and the inclusion of these‬
‭high-quality matches increases the number of movers whom I observe to 22,901 (77 percent).‬

‭I extend the analysis further by analyzing how movers’ housing consumption differs between‬
‭their pre- and post-storm addresses. Specifically, I take the movers who matched to Infutor, and I match‬
‭them a second time based on their post-storm address to CAD data across Texas obtained from‬
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‭CoreLogic.‬‭13‬ ‭This second phase of matching repeats the methodology used in the first phase, considering‬
‭only matches with at least a 1.9 combined Jaro-Winkler score. I successfully match more than 3,000‬
‭movers across Texas, all of whom maintained owner occupancy despite selling their pre-Harvey home.‬

‭Note that if a mover transitions out of owner occupancy, they cannot be accurately matched in the‬
‭second phase because they do not own their post-storm residence. Consequently, I perform an exact match‬
‭based solely on post-storm addresses to the statewide CAD data to learn more about the housing‬
‭consumption of households who transitioned into renter occupancy.‬

‭Appendix A4: Additional Outcomes‬
‭The Owner Transfer dataset also contains information on foreclosures, an outcome indicative of financial‬
‭distress and hardship.‬‭14‬ ‭Foreclosures are a relatively‬‭rare event, with an average of 6 foreclosures per‬
‭hundred households in Houston between 2010 and 2016.‬

‭Foreclosures offer an alternative (yet infrequent) mobility outcome that may be particularly‬
‭sensitive to physical property damage. Homeowners faced with repair costs may default on mortgage‬
‭payments if budget constraints are binding, and policymakers recognize this threat by often implementing‬
‭foreclosure moratoria in the aftermath of a disaster. Appendix Table ? provides results for the impact of‬
‭damage on foreclosures, where I find tightly estimated null effects through 2017 when the moratorium‬
‭was effective. The 95 percent confidence intervals encompass zero throughout the post-Harvey period,‬
‭but there are signs of a temporary spike in the summer of 2018, when the first Harvey-related foreclosure‬
‭proceedings occurred. This potential uptick was short lived, and point estimates hover below zero through‬
‭the remainder of the analytical period. Importantly, my outcome only accounts for foreclosures of a‬
‭homeowner’s pre-storm address, but damaged households may experience differential risk of foreclosing‬
‭on their next residence.‬

‭Appendix A5: Robustness Tests‬
‭The general specification outlined in Equations (2) and (3) require an arbitrary bandwidth and donut-size‬
‭selection. Based on sample-size constraints and the structure of elevation measurement error detailed in‬
‭Section 5 and Appendix A2, I use a bandwidth of [-120.0,-18.7] and [6.6,36.0] to estimate the various‬
‭discontinuity parameters. The following figures explore the robustness of this bandwidth selection.‬

‭14‬ ‭I use a broader definition of foreclosure that includes foreclosure deeds, deeds of trust that specify foreclosure, as‬
‭well as deeds in lieu of foreclosure, the latter of which is colloquially known as a “friendly foreclosure.”‬

‭13‬ ‭I do not have access to CoreLogic’s national data, preventing me from linking out-of-state movers to their‬
‭post-storm addresses.‬
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‭Figure A5.1: First Stage (Robustness)‬

‭Notes: Panel A depicts how parameter estimates from Equation (2) evolve based on a bandwidth of‬ ‭, where‬[‭𝑎‬, − ‭18‬. ‭7‬] ∪ [‭6‬. ‭6‬, ‭36‬]
‭. Panel B depicts how parameter estimates‬‭from Equation (2) evolve based on a bandwidth of‬ ‭,‬‭𝑎‬ ∈ [− ‭24‬, − ‭120‬] [− ‭120‬, − ‭18‬. ‭7‬] ∪ [‭6‬. ‭6‬, ‭𝑏‬]

‭where‬ ‭. Similarly, Panels C and D iterate‬‭through different donut sizes from 0 (no donut) to the‬ ‭and‬ ‭inches, respectively.‬‭𝑏‬ ∈ [‭8‬, ‭36‬] − ‭36‬ ‭18‬

‭Figure A5.2: Year of Construction (Robustness)‬

‭Notes: Panel A depicts how parameter estimates from Equation (3) evolve based on a bandwidth of‬ ‭, where‬[‭𝑎‬, − ‭18‬. ‭7‬] ∪ [‭6‬. ‭6‬, ‭36‬]
‭. Panel B depicts how parameter estimates‬‭from Equation (2) evolve based on a bandwidth of‬ ‭,‬‭𝑎‬ ∈ [− ‭24‬, − ‭120‬] [− ‭120‬, − ‭18‬. ‭7‬] ∪ [‭6‬. ‭6‬, ‭𝑏‬]

‭where‬ ‭. Similarly, Panels C and D iterate‬‭through different donut sizes from 0 (no donut) to the‬ ‭and‬ ‭inches, respectively.‬‭𝑏‬ ∈ [‭8‬, ‭36‬] − ‭36‬ ‭18‬
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‭Figure A5.3: Home Size (Robustness)‬

‭Notes: Panel A depicts how parameter estimates from Equation (3) evolve based on a bandwidth of‬ ‭, where‬[‭𝑎‬, − ‭18‬. ‭7‬] ∪ [‭6‬. ‭6‬, ‭36‬]
‭. Panel B depicts how parameter estimates‬‭from Equation (2) evolve based on a bandwidth of‬ ‭,‬‭𝑎‬ ∈ [− ‭24‬, − ‭120‬] [− ‭120‬, − ‭18‬. ‭7‬] ∪ [‭6‬. ‭6‬, ‭𝑏‬]

‭where‬ ‭. Similarly, Panels C and D iterate‬‭through different donut sizes from 0 (no donut) to the‬ ‭and‬ ‭inches, respectively.‬‭𝑏‬ ∈ [‭8‬, ‭36‬] − ‭36‬ ‭18‬
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‭Figure A5.4: Short Run Moves (Robustness)‬

‭Notes: Figure A5.4 is based on an indicator for Infutor observing at least one individual in household‬‭j‬‭moving between September 2017 and‬
‭March 2018. The regression estimates on Equation (3), a local linear regression with uniform kernels and standard errors are clustered at the‬
‭neighborhood level. Panel A depicts how parameter estimates from Equation (3) evolve based on a bandwidth of‬ ‭, where‬[‭𝑎‬, − ‭18‬. ‭7‬] ∪ [‭6‬. ‭6‬, ‭36‬]

‭. Panel B depicts how parameter estimates‬‭from Equation (2) evolve based on a bandwidth of‬ ‭,‬‭𝑎‬ ∈ [− ‭24‬, − ‭120‬] [− ‭120‬, − ‭18‬. ‭7‬] ∪ [‭6‬. ‭6‬, ‭𝑏‬]
‭where‬ ‭. Similarly, Panels C and D iterate‬‭through different donut sizes from 0 (no donut) to the‬ ‭and‬ ‭inches, respectively.‬‭𝑏‬ ∈ [‭8‬, ‭36‬] − ‭36‬ ‭18‬
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‭Appendix A: Sample Selection‬
‭For ground elevation to be a valid instrument for flood damage (and, therefore, negative wealth shocks)‬
‭during Hurricane Harvey, it must satisfy two conditions. First, ground elevation must be a relevant‬
‭variable, i.e., a property’s ground elevation must be linearly correlated with degree of flood exposure.‬
‭Second, ground elevation’s impact on outcomes can only transmit through flood damage during Harvey.‬

‭A potential threat to identification is selection into flood risk. For example, if wealthier‬
‭homebuyers prefer high-elevation homes, then flood exposure would be correlated with wealth. Note that‬
‭in Texas flood risk is primarily communicated through floodplain designations because federally backed‬
‭mortgages require flood insurance on leveraged property. Hence, most properties‬‭downstream‬‭from the‬
‭Addicks and Barker Reservoirs were flood and insured, implying a baseline level of knowledge of‬
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