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 Abstract 
 The combination of climate change and economic growth in disaster-prone regions increasingly exposes 
 the population to extreme weather events. While the aggregate impacts of disasters are well documented, 
 much less is known about the individual responses to these environmental shocks. In this paper, I estimate 
 the average treatment effects of household-level damage using a fuzzy regression discontinuity design in 
 the context of Hurricane Harvey, which damaged more than 200,000 homes in Houston, Texas in 2017. I 
 leverage the relationship between flooding and a home’s elevation, exploiting a discontinuous increase in 
 damage from $0 to approximately $48,000 once water reaches the first floor. While residential mobility 
 typically spikes after natural disasters, I find no evidence that flood damage causes homeowners to sell 
 and move after Hurricane Harvey. If anything, damage decreases move propensity for multiple months. 
 Although flooded households move at roughly the same rate as their non-flooded peers, I document a 
 divergence in the location and type of housing selected by these movers. My results indicate that flood 
 damage makes people more likely to move shorter distances and transition out of homeownership. 
 Despite the combined shock to shelter and wealth, I find that flooded households are more likely to sort 
 into higher-income census tracts in the aftermath of Hurricane Harvey. Given the importance of 
 place-based spillover effects, the long-run welfare implications of suffering flood damage remain an open 
 area of research. 
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 1  Introduction 
 The combination of climate change and economic growth in disaster-prone regions increasingly exposes 
 the United States population to extreme weather events, with the number of inflation-adjusted 
 billion-dollar natural disasters nearly doubling during the 2010s (NOAA, 2023). The immediate cost of 
 natural disasters is driven by economic disruption and property damage (Smith and Katz, 2013). Housing 
 is the primary asset for a majority of US households, making residential property damage a mixture of 
 shelter and wealth shocks. While the aggregate impacts of disasters are well documented, much less is 
 known about how individuals respond to this blended shock, particularly in terms of housing 
 consumption. 

 Housing choices are central to individual wellbeing. For homeowners, the decision to remain in a 
 home or to sell and move to a new location could impact access to certain labor markets, health care 
 systems, or school districts for those with children. Movers must decide where to relocate, and the 
 characteristics of their neighborhood may affect themselves or other members of their household through 
 environmental or peer effects (Chyn and Katz, 2021). They must also decide whether to rent or purchase 
 their new residence, an investment decision that may impact wealth creation and intergenerational 
 mobility. 

 Isolating the causal effect of disaster damage is difficult due to the lack of administrative datasets 
 detailing household-level exposure. Moreover, damage is endogenous to a variety of factors including 
 individual risk preferences and mitigation measures as well as local investment in infrastructure and 
 emergency preparations, and these correlates may introduce selection bias into estimates of average 
 treatment effects on individual outcomes. The literature addresses these challenges by comparing 
 outcomes of all individuals in a disaster-struck area with outcomes of observably similar individuals in 
 unaffected places (Vigdor, 2008; Groen and Polivka, 2008; Deryugina et al., 2018). Another strand of the 
 literature restricts analyses  within  a disaster area,  relying on local variation in damage intensity to identify 
 causal effects (Hartley and Gallagher, 2017; Bleemer and van der Klauww, 2019; Billings et al., 2022; 
 Gallagher et al., 2023). These techniques, however, estimate the average treatment effect of living in 
 damaged areas rather than the average treatment effect of damage itself. 

 In this paper, I estimate the average treatment effects of household-level damage using a fuzzy 
 regression discontinuity design in the context of Hurricane Harvey, which damaged more than 200,000 
 homes in Houston, Texas in 2017. I leverage the relationship between flooding and a home’s elevation, 
 exploiting a discontinuous increase in damage from $0 to approximately $48,000 once water reaches the 
 first floor. I follow Dong and Kolesar (2023) and implement a donut design, allowing for valid inference 
 despite measurement error in my running variable. To my knowledge, I offer the first causal estimates of 
 household-level damage on individual outcomes. 

 I provide evidence of the hyper-local nature of disaster damage and response. In particular, I 
 construct a household-level damage variable and exploit elevation differences between homes located in 
 the same subdivision, finding substantial variation in damage exposure that causes a persistent divergence 
 in outcomes. My household-level results bolster the findings in the literature that leverages aggregate 
 damage as the level of treatment. 

 While residential mobility typically spikes after natural disasters, I find no evidence that flood 
 damage causes homeowners to sell and move after Hurricane Harvey. If anything, damage decreases 
 move propensity for multiple months after the storm. These effects differ from Billings et al. (2022) and 



 Gallagher et al. (2023), who document little difference in out-migration rates for Houstonians living in 
 flooded or non-flooded census blocks. Their results, however, hint at heterogeneity across housing tenure, 
 and homeowners on the margin of moving may delay that decision as they repair their homes. Moreover, 
 post-disaster construction-labor shortages can prolong rebuilding efforts, and the full extent of disaster aid 
 and insurance payments often takes months to materialize. The timing of these transfers may play an 
 important role in residential mobility decisions. 

 Although flooded households move at roughly the same rate as their non-flooded peers, I 
 document a divergence in the location and type of housing selected by these groups. My results indicate 
 that flood damage makes people more likely to move shorter distances and transition out of 
 homeownership during the five year post-storm period. In particular, I estimate that $10,000 of damage 
 causes a two mile decrease in relocation distance and a two percent decrease in homeownership. Housing 
 choices diverge further when restricting the sample to movers, with an estimated 13 mile and 18 percent 
 average decrease in move distance and homeownership, respectively. 

 The transition out of homeownership occurred during a period of substantial home-price 
 appreciation in Houston, Texas, where the average price increased 42 percent between 2017 and 2022. 
 Back-of-the-envelope calculations suggest more than $100,000 of lost wealth for the average household 
 who transitioned into renter occupancy because of flood damage. 

 The effects on homeownership are particularly striking given that home loans through the Small 
 Business Administration (SBA) are the federal government’s dominant form of individual-level assistance 
 after natural disasters (Collier and Ellis, 2021). Billings et al. (2022) discuss the qualification hurdles for 
 SBA loans and how their regressive allocation may limit their effectiveness to the marginal homeowner 
 exposed to damage. This limitation may explain the damage-induced decrease in homeownership after 
 Hurricane Harvey, but my results suggest that some flooded households may have upgraded their 
 residential environment. 

 Despite the combined shock to shelter and wealth, I find that flooded households are more likely 
 to sort into higher-income census tracts in the aftermath of Hurricane Harvey. Conditional on moving, 
 flood damage is associated with the consumption of newer and more expensive homes. This relative 
 improvement in physical and socioeconomic environments mirrors the long-run recovery patterns 
 documented in the disaster literature (Sacerdote, 2012; Deryugina et al., 2018; Deryugina and Molitor, 
 2020). Given the importance of place-based spillover effects, the long-run welfare implications of 
 suffering flood damage remain an open area of research. 

 The rest of my paper is structured as follows. Section 2 summarizes the natural disaster literature 
 and how individuals respond to environmental shocks. Section 3 offers an overview of Hurricane Harvey 
 and introduces the area of Houston that I analyze. Section 4 summarizes the sources of data and the 
 analytical sample. Section 5 presents my empirical strategy, and Section 6 explores the validity of my 
 approach. The main results are provided in Section 7, and I summarize the overall contribution of this 
 project in Section 8. 

 2  Literature Review 
 Advances in quasi-experimental methods spurred a renaissance in the disaster literature that began with 
 analyses of the victims of Hurricane Katrina. Hurricane Katrina survivors suffered in the short run, but 
 negative average effects dissipated over time across a range of outcomes, including mortality (Deryugina 
 and Molitor, 2020), and employment and earnings (Vigdor, 2007; Groen and Polivka, 2008; Deryugina et 



 al., 2018). These papers all use some variation of a difference-in-differences framework, where the 
 treatment group is a subset of individuals living in areas that were directly impacted by Hurricane Katrina 
 and the control group consists of observably-similar individuals elsewhere in the United States. The 
 estimands in these studies are generally interpreted as the average treatment effect of living in a disaster 
 area, which reflects a weighted average across the spectrum of individual-level disaster exposure. For 
 example, this weighted average includes the response of renter-occupied households as well as 
 homeowners whose property may or may not have been damaged. This average treatment effect is 
 particularly informative for evaluating community-wide impacts and recovery efforts across a region. 

 A parallel group of papers analyze the impacts of Hurricane Katrina by restricting comparisons of 
 individuals living within the disaster area. Gallagher and Hartley (2017) leverage local flood variation in 
 New Orleans and find that residents in the most flooded areas experienced short-term spikes in financial 
 distress relative. Bleemer and van der Klaauw (2019) extend this analysis by examining how housing 
 choices and household composition vary by census-block flood intensity. They find an immediate 
 increase in move propensity that is persistently positive for more than a decade. Homeowners in New 
 Orleans’ inundated census blocks were 10 percentage points less likely to own a home by the end of the 
 ten-year period. 

 More recently, a pair of papers has applied the census-block flood intensity approach to identify 
 the impacts of Hurricane Harvey on individuals in Houston, Texas. Using hydrologic data from the 
 Federal Emergency Management Agency (FEMA), Billings et al. (2022) calculate the weighted average 
 flood depth of developed land for each census block to explore differential responses to damage based on 
 access to insurance and credit. They find no signs of systematic financial distress for households living in 
 the 100-year floodplain, an area where flood insurance takeup rates are higher. Households who live in 
 flooded census blocks outside of the 100-year floodplain experience disproportionate increases in 
 delinquent debt and bankruptcy. The lack of flood insurance in these areas rely makes residents more 
 reliant on disaster assistance, but the allocation of these transfers is regressive and fails to counteract 
 initial inequalities in financial health. Gallagher et al. (2023) apply the same empirical strategy to analyze 
 investment in human capital, finding a reduction of student loans for college-aged individuals living in 
 flooded census blocks relative to their peers in other parts of Houston. These effects are prevalent in areas 
 with higher levels of homeownership, suggesting a relationship between household-level damage and 
 consumption and investment decisions. 

 The emphasis on census-block-level flooding illustrates the intuitive connection between disaster 
 damage and individual responses. While all individuals in a disaster area may be indirectly impacted by 
 the aggregate economic shock, the first-order concern for most disaster mitigation and relief efforts is to 
 address the direct effects of these events. The identifying assumption of the flood-intensity approach 
 relies on changes in outcomes of individuals in less-flooded census blocks providing a useful 
 counterfactual to changes in outcomes for individuals in more-flooded census blocks (conditional on 
 observable geospatial and socioeconomic factors). The literature supports this assumption by 
 documenting the low explanatory power of pre-disaster census-block characteristics on flood intensity. 
 The absence of correlation in aggregate data, however, does not imply individual-level exogeneity of 
 flood exposure, and there may still be concerns of household selection across or within census blocks 
 based on flood risk or unobservable factors. 

 While census blocks are the smallest geographic unit defined by the Census Bureau, they are 
 typically delineated by physical features rather than by the characteristics of inhabitants. I contribute to 
 this literature by restricting comparisons to people living in the same subdivisions, a locally-defined unit 



 that is more homogenous across individual-level characteristics.  1  Moreover, I leverage the quasi-random 
 peak water level reached in these subdivisions during Hurricane Harvey, allowing for the identification of 
 the average treatment effects of household-level disaster damage. 

 3  Hurricane Harvey and Houston Texas 
 Hurricane Harvey landed in Texas in August 2017, producing record-level rainfall that inundated more 
 than 200,000 homes and caused $125 billion in direct damage. Figure 1 illustrates the widespread 
 flooding across the Houston metropolitan statistical area (MSA) by mapping the location of emergency 
 rescue requests throughout the region. 

 Figure 1: Hurricane Harvey Rescue Requests 

 Notes: The zoomed-in box displays the area surrounding the Addicks and Barker Reservoirs (shaded in dark gray). 
 Source: New York Times (2017) 

 One of the major empirical challenges in the natural disaster literature is the endogeneity of 
 damage. In the context of flooding, risk-averse individuals may select away from water sources or 
 implement mitigation measures (e.g., the installation of flood vents). Others may value water as an 
 amenity and prefer to live in close proximity to the natural resource, increasing their risk of flooding. 
 Endogeneity concerns extend beyond individuals, as community-level infrastructure investment and 
 maintenance are important determinants of local damage. 

 1  See Table 2 for a comparison of within-group variation of housing characteristics for subdivisions and census 
 blocks. 



 The Addicks and Barker Reservoirs highlighted in Figure 1 serve as Houston’s primary flood 
 infrastructure, as their earthen dams prevent runoff from the Katy Prairie from inundating the city center 
 during storms. The Army Corps of Engineers developed the reservoirs in the 1940s by constructing the 
 dams and acquiring 25,000 acres of abutting land. This government-owned land is designed to 
 temporarily detain rainfall and allow for controlled drainage eventually into the Gulf of Mexico (Furrh 
 and Bedient, 2023). 

 Unlike lake-forming reservoirs, the government-owned land is perennially dry outside of extreme 
 weather and is utilized as wooded parks, athletic fields, and other alternative uses, effectively masking its 
 flood risk to surrounding suburbs. Moreover, the reservoirs are constructed as giant detention basins, 
 creating a unique flooding mechanism that further distorts the salience of flood risk. While inland flood 
 exposure typically depends on proximity to flowing water, Panel A of Figure 2 shows how the reservoirs 
 create a pool based on a tub concept, where water rises uniformly with the basin irrespective of the 
 location of water flow. 

 Figure 2: Flooding Mechanism 

 Panel A: General Tub Concept 



 Panel B: Addicks and Barker Reservoir Overview 

 Source: O’Neil (2020) and Bloom (2017). 

 Panel B illustrates how Hurricane Harvey’s unprecedented rainfall filled the Addicks and Barker 
 Reservoirs, forcing water above the government-owned land for the first time and flooding thousands of 
 homes. These homes lie outside of the 100-year floodplain, a classification that serves as the primary 
 flood-risk signal in housing markets. I leverage the relatively unknown risk and unique flooding 
 mechanism of the Addicks and Barker Reservoirs to circumvent selection issues that challenge the 
 identification of causal effects of disaster damage on individual outcomes. 

 4  Data Sources and Sample Construction 
 I begin with the universe of owner-occupied housing units that were located in the Addicks and Barker 
 Watersheds at the time of Hurricane Harvey.  2  Residential property data are obtained from the Harris and 
 Fort Bend central appraisal districts and include the names of homeowners, occupancy status, property 
 values, and physical housing characteristics (e.g., home size and year of construction).  3 

 Table 1 summarizes these characteristics within the two watersheds, where there are roughly 
 100,000 homes distributed across 2,200 subdivisions. These homes were typically constructed in the 
 mid-1990s, but homes in the Addicks Watershed tend to be smaller and lower-valued compared to homes 
 in the Barker Watershed. 

 3  Portions of Waller County are located in the Addicks and Barker Watersheds, but these are mostly rural areas that 
 lie well above the reservoirs. 

 2  The Addicks and Barker Watersheds are contiguous watersheds in northwest Houston that both contains reservoirs 
 with their respective names. 



 Table 1: Summary Statistics 

 Mean (Standard Deviation)  Addicks Watershed  Barker Watershed 

 Year of Construction  1995 (10)  1994 (11) 

 Square Feet  2230 (728)  2707 (952) 

 2017 Appraised Value  $183,538 (82858)  $288,806 (134241) 

 Estimated Damage  $1,333 (13078)  $6,681 (31556) 

 Maximum LiDAR Ground Elevation  1,520” (121)  1,431” (152) 

 Number of Subdivisions  1,637  852 

 Number of Owner-Occupied Homes  65,735  35,022 

 Notes: Summary statistics of owner occupied single-family residential properties located in the Fort Bend and Harris County portions of the 
 Addicks and Barker Watersheds. 

 Measuring Disaster Damage 
 Since no administrative datasets detail household-level damage during Hurricane Harvey, I approximate 
 this magnitude using pre- and post-storm property values from the Harris and Fort Bend central appraisal 
 districts. In particular, I calculate 

 (1)  ,  𝐷𝑎𝑚𝑎𝑔  𝑒 
 𝑗 

=  𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑢  𝑒 
 𝑗 , 2017 

−  𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑢  𝑒 
 𝑗 , 2018 

 where  measures the market value  of the structure of property  j  (not including land  value)  𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑢  𝑒 
 𝑖 , 𝑡 

 in year  t  . The 2017 values should not be influenced  by Hurricane Harvey because those numbers were 
 calculated and certified before the storm occurred.  4  On the other hand,  estimates the  𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑎𝑙𝑢  𝑒 

 𝑖 , 2018 

 value of property as of 01 January 2018, which was approximately four months after Hurricane Harvey. 
 Consequently, Equation (1) reflects the change in property value due to disaster damage net of general 
 home-price changes in 2017 and repairs that occurred before year-end. Summary statistics in Table 1 
 indicate average damage of $1,333 and $6,681 in the Addicks and Barker Watersheds, respectively, but 
 the size of the standard deviations indicate substantial variation. 

 Although Texas’ central appraisal districts are required to value property at 100% of its market 
 value as of January 1st of each year, the lack of mandatory sales-price disclosure challenges the accuracy 
 of these estimates. Anecdotal evidence, however, suggests that public appraisers have historically 
 accessed sales data, and the accuracy of market values for typical homes in large subdivisions are less of a 
 concern (Texas Tribune, 2014; City of Austin, 2020). Appendix A1 details the strong, positive 
 relationship between my damage estimates and FEMA’s estimates of flood depth, supporting the validity 
 of this measure.  5 

 5  As an alternative approach, I use FEMA’s flood-depth estimates as the treatment variable, and results are provided 
 in Appendix ?. 

 4  Some taxing jurisdictions allow for the reappraisal of property values after disasters. It is unclear if the central 
 appraisal districts retroactively updated their certified tax rolls, and these updates would bias my damage estimates 
 toward zero. 



 Measuring Property Elevation 
 My identification strategy outlined in Section 5 relies on using property-level elevation as the running 
 variable in a regression discontinuity framework. In particular, properties are exposed to flood damage 
 when water exceeds their first floor elevation (FFE), which I approximate using aerial light detection and 
 ranging (LiDAR) data (TNRIS, 2022). Figure 3 presents the distribution of LiDAR points that measure 
 the ground-surface elevation across three residential parcels.  6 

 Figure 3: Property-Level Ground Elevation 

 Notes: Aerial LiDAR ground elevation points (measured in inches) for two residential properties in Oak Park Trails Subdivision in the Barker 
 Reservoir. Property parcel shapefiles are available at the Harris and Fort Bend Central Appraisal Districts. Aerial LiDAR data are accessed from 
 TNRIS (2022). 

 Outcomes 
 Given my analytical sample of owner-occupied households, I use deed transactions from CoreLogic’s 
 Owner Transfer dataset to determine if people sell their homes and move after Hurricane Harvey. I 
 consider a household as having moved if a deed associated with their property is recorded after Harvey 
 stalled over Houston on August 25th, 2017.  7  More than a quarter of the sample recorded a deed within 
 five years of the storm. 

 7  General and special warranty deeds are the most commonly used deeds in Texas and account for more than 90 
 percent of the residential records in the CoreLogic data. 

 6  Based on conversations with housing developers, I assume that each property’s FFE is equal to its maximum 
 ground elevation. This approximation results in measurement error in my elevation running variable, and I explore 
 the structure of this error in Appendix A2. 



 After measuring homeselling and mobility, I track the set of movers to their post-storm residence 
 using a nationwide database of address histories from Infutor Data Solutions, an aggregator of address 
 data that compiles voter files, property deeds, USPS address changes, etc. Appendix A3 details the steps 
 of my linking process. The linked dataset allows me to observe movers’ residential decisions after 
 Hurricane Harvey. Specifically, I analyze how flood damage impacts the distance moved from pre-storm 
 address as well as the housing tenure and characteristics of their post-storm residence. I also examine the 
 socioeconomic characteristics (e.g., average household income) of movers’ post-storm census tracts. 

 5  Empirical Framework 
 The idiosyncrasies of Houston’s reservoirs described in Section 3 offer a unique setting to identify the 
 causal effects of disaster damage. My empirical strategy involves the comparison of outcomes for 
 households in the same subdivision who live just above and just below the peak water level reached in the 
 reservoirs during Hurricane Harvey. The US Army Corps of Engineers (2020) report that the Addicks and 
 Barker Reservoirs reached peaks of 1309.2 and 1219.2 inches above mean sea level, respectively, which I 
 use as thresholds in a fuzzy regression discontinuity design. 

 Consider a theoretical experiment where identical homes are randomly assigned different “doses” 
 of flooding. The average treatment effect of dose  d  could be estimated by the difference between mean 
 outcomes for those treated with  d  and non-flooded households.  8  Flood exposure, however, is a nonrandom 
 event at a hyper-localized level due in part to individuals’ mitigation measures (e.g., the installation of 
 flood walls or flood vents), community development decisions (e.g., drainage infrastructure), and 
 atmospheric and topographic variation. Table 2 documents heterogeneity in property characteristics across 
 a range of geospatial units in my sample.  9  Properties are relatively homogenous within subdivisions, but 
 there remains variation in the value and size of homes as well as in elevation. Elevation (and therefore 
 flood risk) correlates with the value, size, age, and other (potentially unobservable) property 
 characteristics that may also be related to outcomes, introducing omitted variable bias into point 
 estimates. 

 Table 2: Average (Within-Group) Standard Deviation 

 Group Level 
 (Number of Groups) 

 Market Value 
 (2010-2016) 

 Home 
 Size 

 Year 
 Built 

 Maximum Ground 
 Elevation (Inches) 

 Watershed (2)  $101,034  812sqft  10.7  138” 

 Zip Code (10)  $81,951  753sqft  9.5  78” 

 Census Block (3101)  $31,026  445sqft  2.6  11” 

 Subdivisions (2196)  $20,865  383sqft  1.6  10” 

 9  For example, the standard deviation of home size is 729sqft and 895sqft in the Addicks and Barker Watersheds, 
 respectively, and the average of 812sqft across the two watersheds. The averages are similar when weighted by the 
 number of properties in each group. 

 8  The  average treatment effect  at dose  d  describes the level effect of the dose-response relationship. Alternatively, 
 the slope effect captures  average causal response  to an incremental change in the dose at  d  (Callaway et al., 2021). 



 Notes: Each row contains averages of within-group standard deviations at progressively smaller levels. For example, the standard deviation of 
 home size is 729sqft and 895sqft in the Addicks and Barker Watersheds, respectively, and the average is 812sqft across the two watersheds. 
 Averages are similar when weighted by the number of properties in each group. 

 I address this concern by analyzing properties at elevations near the peak water level that was reached in 
 the Addicks and Barker Reservoirs. Property and household characteristics, as well as potential outcomes, 
 should be smooth as you rise in elevation through the peak water level because Hurricane Harvey’s 
 precise magnitude was unknown  a priori  . Households could not predict the peak water level when 
 making residential-sorting decisions months or years before the storm. The only difference between 
 homes slightly above and below this level should be flood exposure. This setting approximates a local 
 randomized experiment, where quasi-identical distributions of homes receive different damage doses. 

 My identification strategy exploits the fact that the intensity of flood damage decreases with a 
 property’s elevation up to the peak water level. For example, National Flood Services LLC estimates 
 approximately $37,000 in structural damage for a 2,500sqft, one-story home that is exposed to six inches 
 of water compared to $24,000 in damage for the same home exposed to a single inch. No damage is 
 expected for homes lying above water (FloodSmart, 2019). While the hydrology literature documents 
 several types of flood damage functions, a common characterization is a discontinuous increase in 
 damage at the first floor elevation (Theodosopoulou et al., 2022). Figure 4 illustrates a simple piecewise 
 linear damage function with a discontinuity where the first floor elevation equals the peak water level. 

 Figure 4: Theoretical Damage Function 

 Notes: The running variable is the difference between the peak water level and property  j  ’s first floor elevation. For example, a property whose 
 first floor elevation is one foot below the peak water level has a running variable  .  𝑟 

 𝑗 
=  12 

 I formalize this approach to estimate the average treatment effects of damage by using a fuzzy 
 regression discontinuity design, where the expected damage function jumps discontinuously at the peak 



 water level. I include subdivision fixed effects to restrict comparisons to individuals who live in 
 observably-equivalent homes but on different sides of the peak water level. 

 As mentioned in Section 4, I approximate each property’s first floor elevation with its maximum 
 ground elevation, admittedly using a running variable with measurement error.  10  Following Dong and 
 Kolesar (2023), I implement a donut design to allow for valid inference despite mismeasured elevation. 
 The donut solution requires two key assumptions. First, potential outcomes must be smooth in the 
 mismeasured variable, which may hold mechanically as measurement error in the running variable tends 
 to smooth conditional expectation functions. To illustrate this phenomenon in my context, I simulate a 
 $20,000 damage discontinuity as a function property elevation, comparing measurements with and 
 without 12-inches of elevation error. Panel A of Figure 5 reveals how measurement error distorts the true 
 discontinuity by smoothing the conditional expectation function. 

 The second assumption requires that the mismeasured running variable correctly classifies 
 treatment assignment. The simulated measurement error on the right side of Panel A, however, illustrates 
 how some undamaged (damaged) homes are misclassified below (above) the peak water level. Removing 
 misclassified observations resolves the measurement-error issue. Panel B illustrates the effectiveness of a 
 12-inch donut in the presence of 12 inches of measurement error. Note that the standard challenges of 
 donut trimming apply in this context (e.g., lost sample size and a modified local average treatment effect). 

 Figure 5: Simulated Damage Function 

 Panel A: Regression Discontinuity 

 10  Dong and Kolesar (2023) find that nearly a quarter of regression discontinuity designs that are published in top 
 economics journals suffer from this threat to identification. Their proposed donut solution provides for valid 
 inference for the local average treatment effect of units with values of the  mismeasured  running variable near the 
 true threshold. In contrast, the canonical regression-discontinuity framework that estimates the local average 
 treatment effect of units with values of the  true  running variable around the same threshold. 



 Panel B: Regression Discontinuity with 12-Inch Donut 

 Notes: Figure 5 plots the average damage at each elevation inch for simulated data with a $20,000 discontinuity at  . The left sides of Panels  𝑟 =  0 
 A and B illustrate the mean plots in the presence of accurate elevation data. The right sides of Panels A and B illustrate the mean plots in the 
 presence of 24 inches of measurement error (12 inches above and below the true value). Panel B depicts dashed lines at ±12 inches, revealing 
 how sample trimming can remove the measurement-error distortion of the conditional mean plots. 

 To implement the donut fuzzy regression discontinuity design, I start by estimating the 
 discontinuity in damage around the peak water levels reached in the Addicks and Barker Reservoirs. I 
 standardize the running variable by subtracting property  j  ’s maximum ground elevation from the peak 
 water level of the reservoir in which  j  is located,  resulting in a measure of the relative inches below the 
 threshold. The estimating equation of the first stage is 

 (2)  for  ,  𝐷𝑎𝑚𝑎𝑔  𝑒 
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 right-side lengths of the donut. 
 There are two primary motivations for the fuzzy component of the model. First, the magnitude of 

 damage depends on the volume of water exposure to a home. The fuzzy design allows for causal 
 identification of average treatment effects in the presence of different treatment intensities. Second, the 
 probability of damage is non-binary across elevation because of other idiosyncrasies and determinants of 
 flooding, i.e., there exists subsets of the population whose damage was not determined by their elevation 
 relative to the peak water level. The fuzzy design allows for the identification of the local average 
 treatment effect of the households who flooded because of this relative elevation (i.e., the “compliers”). 

 The reduced-form regression equation illustrates how elevation is used to estimate the effects of 
 flood shocks on outcomes. Specifically, the reduced-form equation is 
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 where  Y  is the outcome of interest. Note that the  parameter  is the local average treatment effect  of living λ
 below the peak water level (or the intention-to-treat effect). The local average treatment effect of flood 
 damage can be recovered by scaling  by the parameter  from the first stage. λ β



 The causal interpretation of these parameters (and their ratio) relies on three key identifying 
 assumptions in my setting. First, there must exist a relationship between a property’s maximum ground 
 elevation and flood damage that changes as you approach the edges of the donut surrounding the peak 
 water level. Second, maximum ground elevation must accurately assign instances where flood damage 
 occurred. Third, the exclusion restriction requires potential outcomes to be smooth through the peak water 
 level and for the peak water level to affect outcomes  only through  its impact on flood damage. I evaluate 
 these assumptions in the following section. 

 6  Empirical Validation 
 I begin by exploring the damage-elevation relationship in the Addicks and Barker Watersheds that is 
 specified in Equation (2). Figure 6 reveals a smooth curve similar to the simulation results with 
 measurement error. There are fewer observations to the right of the threshold because the reservoirs’ peak 
 water levels only extended about three feet above the government-owned land and into neighborhoods.  11 

 Figure 6: First Stage 

 Notes: The regression estimates and lines are based on Equation (2), a local linear regression with rectangular kernels and a preferred bandwidth 
 of [-120.0,-18.7] and [6.6,36.0]. Standard errors are clustered at the neighborhood level. The scatterplots are generated by rounding elevation to 
 the nearest inch and estimating a subdivision fixed effects model saturated in 1-inch elevation dummy variables. The sample mean of the outcome 
 variable is added back to the coefficient estimates for illustrative purposes. The red lines correspond to the preferred sample trimming at -18.7 and 
 6.6 inches below the peak water level. 

 Based on the measurement error structure explored in Appendix A2, I trim the sample from -18.7 
 to 6.6 inches to ensure accurate assignment of flood damage by the ground elevation variable. Using this 
 donut design, I estimate an average increase of $47,795 in flood damage for homes lying just below the 
 peak water level. Robustness tests in the Appendix corroborate the stability of my estimates at different 
 donut sizes and bandwidths. 

 11  An additional asymmetry appears around the threshold because of the right-skewness of elevation measurement 
 error that is discussed in Appendix A2. 



 The third identifying assumption requires potential outcomes to be smooth through the peak 
 water level and for the peak water level to affect outcomes only through flood damage. While this is 
 inherently untestable, I provide support for this claim by documenting a relatively constant relationship 
 between the elevation and pre-storm property characteristics on both sides of the peak water level. Figure 
 7 illustrates the similarity in housing characteristics above and below the peak water level, which is 
 unsurprising as Harvey’s precise magnitude was unpredictable when households moved into these 
 neighborhoods. The lack of pre-storm patterns supports the assumption that a property’s relative distance 
 to the peak water level only affected households through the impact of flood damage. 

 Figure 7: Pre-Storm Property Characteristics and Elevation 

 Panel A: Year of Construction 

 Panel B: Home Size 

 Notes: Panels A and B replace the outcome in Equation (2) with the property’s year of construction and structure square footage, respectively. 
 Equation (2), a local linear regression with rectangular kernels and a preferred bandwidth of [-120.0,-18.7] and [6.6,36.0]. Standard errors are 
 clustered at the neighborhood level. The scatterplots are generated by rounding elevation to the nearest inch and estimating a subdivision fixed 
 effects model saturated in 1-inch elevation dummy variables. The sample mean of the outcome variable is added back to the coefficient estimates 
 for illustrative purposes. The red lines correspond to the preferred sample trimming at -18.7 and 6.6 inches below the peak water level. 



 7  Results 
 Natural disasters are associated with spikes in out-migration that slowly attenuate over multiple years 
 (Boustan et al., 2020). Billings et al. (2022) document an immediate increase in residential mobility after 
 Hurricane Harvey but find no connection between those movements and census-block flood intensity. 

 My results presented in Figure 8, however, indicate that household-level flood damage does not 
 cause the initial wave of out migration. I estimate that $10,000 of damage decreases homeowners’ 
 propensity to sell by year-end 2017 by 0.5 percentage points, a 23 percent decline relative to their 
 non-flooded neighbors who lived just above the peak water level. There is no discernable impact on move 
 propensity in 2018. 

 Panel B details the cumulative effects of $10,000 of damage on moving in each month through 
 September 2022. The cumulative effect starts attenuating near the end of 2018 and hovers around zero for 
 most the post-Harvey period. The treatment-effect dynamics suggest that flood damage temporarily 
 delayed relocation decisions, but there was ultimately no clear impact on move propensity in the long run. 
 The difference between this pattern and that generally observed in the literature may be because my 
 sample consists exclusively of homeowners rather than renter households. Homeowners on the margin of 
 moving may choose to repair their property before relocating, and many flooded households were forced 
 to wait months after Hurricane Harvey for full disbursement of disaster aid or insurance payments to help 
 fund this investment. 

 Figure 8: Estimated Average Treatment Effect on Moving 

 Panel A: Residential Mobility in 2017 and 2018 



 Panel B: Cumulative Effects Over Time 

 Notes: The point estimate  is the the estimated causal effect of $10,000 of damage, reflecting the ratio of the reduced form effect  from θ
^

λ
^

 Equation (3) and the first stage effect  from Equation (2). The left side of Panel A is based on an indicator for property  j  having a deed recorded β
^

 between September 2017 and December 2017. The right side of Panel A similarly uses an indicator for a deed recorded any time in 2018. The 
 regression estimates and lines are based on Equation (3), a local linear regression with rectangular kernels and a preferred bandwidth of 
 [-120.0,-18.7] and [6.6,36.0]. Standard errors are clustered at the neighborhood level. The scatterplots are generated by rounding elevation to the 
 nearest inch and estimating a subdivision fixed effects model saturated in 1-inch elevation dummy variables. The sample mean of the outcome 
 variable is added back to the coefficient estimates for illustrative purposes. The red lines correspond to the preferred sample trimming at -18.7 and 
 6.6 inches below the peak water level. Panel B plots the point estimates and 95% confidence intervals using a cumulative outcome variable for 
 each post-storm month. For example, the estimates for September 2018 are based on an outcome variable for whether a property had a deed 
 recorded any time between September 2017 and September 2018. Standard errors are clustered at the neighborhood level. 

 While the effect on households’ decision to move evolves over time and eventually attenuates, I 
 document a persistent impact on how and where household relocate. Figure 9 illustrates the impact of 
 $10,000 of flood damage on the probability of households renting their next residence. The relatively 
 small point estimate in Panel A is driven by the fact that more than two-thirds of the analytical sample did 
 not move from their pre-storm address by 2022. Conditioning on the set of movers in Panel B reveals a 
 large transition out of owner occupancy. In particular, $10,000 of damage makes households 6 percentage 
 points (or 18 percent) more likely to rent their next residence compared to their non-flooded peers. 

 Figure 9: Estimated Average Treatment Effect on Renting 

 Notes: I consider an individual as a post-storm renter if they sold their home after Hurricane Harvey and did not appear in appraisal-district data 
 at their new address before 2022. I am currently only able to match post-storm movers to appraisal district data in Harris and Fort Bend County, 
 accounting for two-thirds of movers. If movers relocated away from those counties, they are considered to be renters. The left side of Panel A 



 uses the full sample including homeowners who do not sell after Hurricane Harvey. The right side of Panel B restricts the sample to movers. The 

 point estimate  is the the estimated causal effect of $10,000 of damage, reflecting the ratio of the reduced form effect  from Equation (3) and θ
^

λ
^

 the first stage effect  from Equation (2). The regression estimates and lines are based on Equation (3), a local linear regression with rectangular β
^

 kernels and a preferred bandwidth of [-120.0,-18.7] and [6.6,36.0]. Standard errors are clustered at the neighborhood level. The scatterplots are 
 generated by rounding elevation to the nearest inch and estimating a subdivision fixed effects model saturated in 1-inch elevation dummy 
 variables. The sample mean of the outcome variable is added back to the coefficient estimates for illustrative purposes. The red lines correspond 
 to the preferred sample trimming at -18.7 and 6.6 inches below the peak water level. 

 The impact of flood damage extends to the types of neighborhoods and homes where individuals 
 choose to live. Results in Figure 10 indicate that flood damage decreases the distance between movers’ 
 pre- and post-storm residences, but impacted households tend to sort into higher-valued homes and 
 higher-income neighborhoods. 

 Figure 10: Estimated Average Treatment Effect on Neighborhood and Home Choice for Movers 

 Panel A: Distance Moved 

 Panel B: Post-Storm Home Values (2020) 



 Panel C: Post-Storm Census Tract Average Income (2020) 

 Notes: Figure 10 restricts the sample to individuals who sold their home after Hurricane Harvey and who have a post-storm address in the Infutor 
 data. Panels A and C include movers who relocated across the United States, while Panel B considers only those who relocated within Harris and 

 Fort Bend County, as I am only able to match post-storm movers to appraisal district data in Harris and Fort Bend County. The point estimate  is θ
^

 the the estimated causal effect of $10,000 of damage, reflecting the ratio of the reduced form effect  from Equation (3) and the first stage effect λ
^

β
^

 from Equation (2). The regression estimates and lines are based on Equation (3), a local linear regression with rectangular kernels and a preferred 
 bandwidth of [-120.0,-18.7] and [6.6,36.0]. Standard errors are clustered at the neighborhood level. The scatterplots are generated by rounding 
 elevation to the nearest inch and estimating a subdivision fixed effects model saturated in 1-inch elevation dummy variables. The sample mean of 
 the outcome variable is added back to the coefficient estimates for illustrative purposes. The red lines correspond to the preferred sample 
 trimming at -18.7 and 6.6 inches below the peak water level. 

 8  Conclusion 
 The natural disaster literature has documented a dynamic recovery process acros a variety of outcomes for 
 individuals living in disaster-struck areas. I contribute to this literature by using property-level damage 
 data in a quasi-experimental empirical strategy to estimate the average treatment effect of household 
 damage exposure on residential mobility and housing choices after Hurricane Harvey. I leverage the 
 relatively unknown risk and unique flooding mechanism of Houston’s Addicks and Barker Reservoirs to 
 circumvent selection issues that challenge the identification of causal effects of disaster damage. I 
 overcome measurement error in the elevation running variable by sample trimming, resulting in a donut 
 regression discontinuity design. I examine the relationship between flooding and a home’s elevation, 
 exploiting a discontinuous increase in damage from $0 to approximately $48,000 once water reaches the 
 first floor. The results from this first stage are used to rescale reduced-form estimates of the impact of 
 $10,000 of flood damage on residential mobility and housing outcomes. 

 I reject the notion that disaster damage explains the spike in out-migration for homeowners. 
 These findings differ from Billings et al. (2022) and Gallagher et al. (2023), who document little 
 difference in out-migration rates for Houstonians living in flooded or non-flooded census blocks. Their 
 results, however, hint at heterogeneity across housing tenure, and their sample includes renter households. 

 Although flooded homeowners move at roughly the same rate as their non-flooded peers, I 
 document a divergence in the choices made by those who decide to relocate. My results indicate that 
 flood damage makes people more likely to move shorter distances and transition out of homeownership. 
 In particular, I estimate that $10,000 of damage causes a two mile decrease in relocation distance and a 
 two percent decrease in homeownership. Housing choices diverge further when restricting the sample to 



 movers, with an estimated 13 mile and 18 percent average decrease in move distance and 
 homeownership, respectively. 

 Despite the combined shock to shelter and wealth, I find that flooded households are more likely 
 to sort into higher-income census tracts in the aftermath of Hurricane Harvey. This relative improvement 
 in physical and socioeconomic environments mirrors the long-run recovery patterns documented in the 
 disaster literature (Sacerdote, 2012; Deryugina et al., 2018; Deryugina and Molitor, 2020). Since disaster 
 damage pushes people out of their neighborhoods and into new economic environments, the impacts of 
 extreme weather may extend into other aspects of life. These neighborhood effects may augment or offset 
 the transition into different types of housing or housing tenure. 

 The totality of my results raise important questions about the effectiveness of disaster aid. On the 
 one hand, the muted residential mobility response may indicate that SBA loans are preventing people 
 from losing their homes after catastrophic events. On the other hand, disaster damage net of relief efforts 
 led to a substantial transition out of homeownership and into renter occupancy. The normative 
 implications of this transition are unclear, especially as flooded households tend to relocate into higher 
 income neighborhoods that may offer improved economic opportunities. 
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 Appendix A1: FEMA Flood Depth and Damage 
 Estimates 
 Immediately after Hurricane Harvey, FEMA began modeling flood depths (i.e., the difference between 
 water elevation and ground elevation) across the disaster zone. FEMA’s flood-depth data are based on a 
 variety of sources including observed water levels at stream gauges, remote sensing, and other inspection 
 data. These data are intended to be used for determining damage levels on specific structures (FEMA, 
 2018). 

 Figure A1 presents the relationship between three measures of property-level flood depth and my 
 estimates of flood damage in the Addicks and Barker Watersheds. FEMA’s model does not capture flood 
 depths below 12 inches, resulting in left-censored data grouped at zero inches. Properties where the 
 minimum flood depth is approximately 12 inches average almost $10,000 of damage. All three 
 flood-depth metrics are positively related to my damage estimates. 

 Figure A1: Property-Level Flood Depth and Estimated Damage 



 Appendix A2: Measurement Error in Elevation 
 One of the implications of the intra-parcel elevation variation is that I may not observe the true FFE. 
 Based on conversations with housing developers, I assume that each property’s FFE is equal to its 
 maximum ground elevation. In order to explore the error structure of this approximation, I obtain 
 validation data generated by mobile (rather than aerial) LiDAR technology that measures the elevation of 
 the base of each home’s front door (Cyclomedia, 2020). There is minimal overlap between the validation 
 data and my analytical sample, but I am able to compare the maximum ground elevation and base-of-door 
 elevations for 13,000 homes in other parts of Houston. 

 Figure A2 displays the distribution of deviations between the two measures. The maximum 
 ground elevation tends to be higher than the base of the front door, resulting in positive skewness. 
 Variation in landscaping, natural land gradients, and instrument imprecision likely explain this 
 overestimation. The maximum ground elevation, however, is highly predictive of base-of-door elevation, 
 with a 0.99 correlation coefficient and a majority of errors lying within seven inches. I use this error 
 structure to refine my empirical strategy in Section 5. 

 Figure A2: Elevation Data Deviations 

 In order to satisfy the second identifying assumption outlined in Section 4, the mismeasured 
 elevation must correctly classify when properties are damaged. In an ideal setting, I would delete 
 observations whose maximum ground elevation lies within the support of measurement error estimated 
 from the validation data. This support, however, extends from -30 to 48 inches, thereby removing my 
 entire sample right of the threshold. I opt for a tighter trimming that spans 80 percent of the error support 
 but maintains two-thirds of my sample right of the threshold. 



 Appendix A3: Data Linking 
 In Step 1 I link more than 17,000 movers (57 percent) to the Infutor data based on an exact match of their 
 names and addresses at the time of Hurricane Harvey. The imperfect match rate is likely driven by lack of 
 standardization of names and addresses across data sources. For example, the use of a middle initial rather 
 than a middle name would result in a failure to match. 

 Figure A3: Linking Central Appraisal District Data to Infutor 

 I allow for more flexible matching in Step 2 using the Jaro-Winkler string-distance algorithm, which 
 scores the similarity of strings between 0 and 1 for no similarity and exact matches, respectively. Since I 
 link movers based on both names and addresses, the combined Jaro-Winkler score ranges from 0 to 2. I 
 consider combined scores above 1.8 to be extremely accurate, and the inclusion of these high-quality 
 matches increases the number of movers whom I observe to 22,901 (77 percent). 

 I extend the analysis further by analyzing how movers’ housing consumption differs between 
 their pre- and post-storm addresses. Specifically, I take the movers who matched to Infutor, and I match 
 them a second time based on their post-storm address to CAD data across Texas obtained from 
 CoreLogic.  12  This second phase of matching repeats the methodology used in the first phase, considering 
 only matches with at least a 1.9 combined Jaro-Winkler score. I successfully match more than 3,000 
 movers across Texas, all of whom maintained owner occupancy despite selling their pre-Harvey home. 

 12  I do not have access to CoreLogic’s national data, preventing me from linking out-of-state movers’ to their 
 post-storm addresses. 



 Note that if a mover transitions out of owner occupancy, they cannot be accurately matched in the 
 second phase because they do not own their post-storm residence. Consequently, I perform an exact match 
 based solely on post-storm addresses to the statewide CAD data to learn more about the housing 
 consumption of households who transitioned into renter occupancy. 

 Appendix 4: Additional Outcomes and Robustness 
 Checks 
 The Owner Transfer dataset also contains information on foreclosures, an outcome indicative of financial 
 distress and hardship.  13  Foreclosures are a relatively rare event, with an average of 6 foreclosures per 
 hundred households in Houston between 2010 and 2016. 

 Foreclosures offer an alternative (yet infrequent) mobility outcome that may be particularly 
 sensitive to physical property damage. Homeowners faced with repair costs may default on mortgage 
 payments if budget constraints are binding, and policymakers recognize this threat by often implementing 
 foreclosure moratoria in the aftermath of a disaster. Appendix Table ? provides results for the impact of 
 damage on foreclosures, where I find tightly estimated null effects through 2017 when the moratorium 
 was effective. The 95 percent confidence intervals encompass zero throughout the post-Harvey period, 
 but there are signs of a temporary spike in the summer of 2018, when the first Harvey-related foreclosure 
 proceedings occurred. This potential uptick was short lived, and point estimates hover below zero through 
 the remainder of the analytical period. Importantly, my outcome only accounts for foreclosures of a 
 homeowner’s pre-storm address, but damaged households may experience differential risk of foreclosing 
 on their next residence. 

 13  I use a broader definition of foreclosure that includes foreclosure deeds, deeds of trust that specify foreclosure, as 
 well as deeds in lieu of foreclosure, the latter of which is colloquially known as a “friendly foreclosure.” 


